Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.2.74

Synthesis and Characterization of Soft Magnetic Composite Powders in Fe2O3-Zn System by Mechanical Alloying  

Lee, Chung-Hyo (Department of Advanced Materials Science and Engineering, Mokpo National University)
Publication Information
Korean Journal of Materials Research / v.30, no.2, 2020 , pp. 74-80 More about this Journal
Abstract
Synthesis of composite powders for the Fe2O3-Zn system by mechanical alloying (MA) has been investigated at room temperature. Optimal milling and heat treatment conditions to obtain soft magnetic composite with fine microstructure were investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that α-Fe/ZnO composite powders in which ZnO is dispersed in α-Fe matrix can be obtained by MA of Fe2O3 with Zn for 4 hours. The change in magnetization and coercivity also reflects the details of the solid-state reduction process of hematite by pure metal of Zn during MA. Densification of the MA powders was performed in a spark plasma sintering (SPS) machine at 900 ~ 1,000 ℃ under 60 MPa. Shrinkage change after SPS of sample MA'ed for 5 hrs was significant above 300 ℃ and gradually increased with increasing temperature up to 800 ℃. X-ray diffraction results show that the average grain size of α-Fe in the α-Fe/ZnO composite sintered at 900 ℃ is in the range of 110 nm.
Keywords
soft magnetic composite powders; $Fe_2O_3-Zn$ system; magnetic properties; spark plasma sintering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Eckert and L. Schultz, J. Less Common Met., 166, 293 (1990).   DOI
2 C. C. Koch, O. B. Cavin, C. G. Mckamey and J. O. Scarbrough, Appl. Phys. Lett., 43, 1017 (1983).   DOI
3 R. B. Schwarz and C. C. Koch, Appl. Phys. Lett., 49, 146 (1986).   DOI
4 R. B. Schwarz and W. L. Johnson, Phys. Rev. Lett., 51, 415 (1983).   DOI
5 Y. Ogino, S. Murayama and T. Yamasaki, J. Less Common Met., 168, 221 (1991).   DOI
6 C. H. Lee, J. Ceram. Process. Res., 9, 321 (2008).   DOI
7 L. F. Mattheiss, Phys. Rev. B: Condens. Matter Mater. Phys., 45, 3252 (1992).   DOI
8 T. Fukunaga, N. Kuroda, C. H. Lee, T. Koyano and U. Mizutani, J. Non-Cryst. Solids, 176, 98 (1994).   DOI
9 H. J. Fecht, E. Hellstern, Z. Fu and W. L. Johnson, Metall. Mater. Trans. A, 21, 2333 (1990).   DOI
10 K. Tokumitsu, Mat. Sci. Forum, 88-90 715 (1992).   DOI
11 H. Izumi, K. Izumi and K. Kudaka, J. Jpn. Soc. Powder Powder Metall., 48, 1051 (2001).   DOI
12 O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5th ed., p.268, Pergamon Press, New York (1983).
13 W. H. Hall, J. Inst. Met., 75, 1127 (1948).
14 U. Mizutani and C. H. Lee, Mater. Trans. JIM, 36, 210 (1995).   DOI
15 K. Schnitzke, L. Schultz, J. Wecker and M. Katter, Appl. Phys. Lett., 57, 2853 (1990).   DOI
16 G. Herzer, IEEE. Trans. Magn., 25, 3327 (1989).   DOI
17 L. Schultz and J. Wecker, Mater. Sci. Eng., 99, 127 (1988).   DOI