• Title/Summary/Keyword: Spacing of discontinuities

Search Result 25, Processing Time 0.023 seconds

The Experimental and Numerical Studies on the Fracture of Gypsum with Three Discontinuities (삼중 불연속면을 가진 석고의 파괴에 대한 실험 및 수치해석에 관한 연구)

  • 사공명
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.173-180
    • /
    • 2002
  • The specimens with three discontinuities have been tested in uniaxial compression. The geometry of discontinuities is changed by three different parameters: flaw inclination angle, continuity, and spacing. From the tips of the discontinuities wing and secondary cracks are observed. Wing cracks initially propagate curvilinear direction and follow loading direction after some distance from the tip of the discontinuities. Two different types of secondary cracks have been observed from the study: quasi-coplanar secondary cracks and oblique secondary cracks. From the test nine different types of coalescence are observed and they show a correlation with flaw angle and ligament angle. It is attempted to simulate the observed results by using FROCK(Fractured ROCK). FROCK is a code based on the hybridized DDM(Displacement Discontinuities Method) . It is shown that FROCK has quite potential of modeling of rock fracture processes.

  • PDF

A Study of Simple Rock Mass Rating for Tunnel Using Multivariate Analysis (다변량분석을 이용한 터널에서의 간편 RMR에 관한 연구)

  • 위용곤;노상림;윤지선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.493-500
    • /
    • 2000
  • Rock Mass Rating has been widely applied to the underground tunnel excavation and many other practical problems in rock engineering. However, Rock Mass Rating is hard to make out because it is difficult to estimate each valuation items through all kind of field situations and items of RMR have interdependence. So the experts of tunnel assessment have problems with rating rock mass. In this study, using multivariate analysis based on domestic data(1011EA) of water conveyance tunnel, we presented rock mass rating system which is objective and easy to use. The constituents of RMR are decided to RQD, condition of discontinuities, groundwater conditions, orientation of discontinuities, intact rock strength, spacing of discontinuities in important order. In each step, we proposed the best multiple regression model for RMR system. And using data which have been collected at other site, we examined that presented multiple regression model was useful.

  • PDF

Numerical Analysis on Flow Characteristics Around a Cavity with Flaps (플랩이 있는 공동 부근에서의 유동특성 해석)

  • Song, Ho-Sung;Park, Jun-Hong;Song, Si-Mon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.645-651
    • /
    • 2008
  • For a high speed train driving at 300 km/h, aero-acoustic noise is a dominant component among various noise sources. The aeroacoustic noise is mainly due to inter-coach spacings because discontinuities in the train surface significantly disturb turbulent flows. This often leads to the uncomfortableness of passengers. Interestingly, the aero-acoustic noise reduces with decreasing the mud-flap spacing of the inter-couch spacing. We perform numerical simulations to investigate flow characteristics around the inter-coach spacing. We model the inter-coach spacing as a simple 2-D cavity with flaps, and calculate the velocity and pressure field using two equation turbulence models, varying the flap spacing. The results show that a wider flap spacing develops a higher inflection point in mean velocity profiles over the cavity. It is likely that large eddies generated near the inflection point persist longer in the downstream since they are less affected by the wall. This probably induces the more aero-acoustic noises. The wider spacing also results in the larger pressure difference between the inside and outside of the cavity. This is also responsible for the increased noise since the large difference would cause a strong flow oscillations in and out of the cavity.

Estimation In-Situ Rockfall Block Weight Distribution Using Scan-Line Survey Results and Examination its applicability in Practical Rockfall Analysis (선조사 결과에 의한 실제낙석무게분포의 추정과 설계적용성 검토)

  • Kim, Su-Chul;Kim, Dong-Hee;Jung, Hyuk-Il;Kim, Seok-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.639-648
    • /
    • 2005
  • Up to now, practical engineers applying simplicity value of rockfall block weight suggested in design manual without considering in-situ rockfall block weight which reflect joint characteristics. However, the size of rockfall block varies with joint spacing of discontinuities and influences over rockfall analysis results. In this paper, we estimate realistic rockfall block weight distribution using statistical invariances of joint spacing derived from scan-line survey result. And, we study whether this distribution is applicable in practical rockfall analysis directly. As the results of this study, rockfall analysis results that using rockfall block weight distribution estimated from scan-line survey show resonable and realistic outcomes.

  • PDF

A Study of Efficient Rock Mass Rating for Tunnel Using Multivariate Analysis (다변량분석을 이용한 터널에서의 효율적인 암반분류에 관한 연구)

  • Wye, Yong-Gon;No, Sang-Lim;Yoon, Ji-Son
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.41-49
    • /
    • 2000
  • Rock Mass Rating has been widely applied to the underground tunnel excavation and many other practical problems in rock engineering. However, Rock Mass Rating is hard, even by the experts of tunnel assessment owing to lack of investigation system. In this study, using multivariate analysis we presented rock mass rating system that is objective and easy to use. The constituents of RMR are decided to RQD, condition of discontinuities, groundwater conditions, intact rock strength, orientation of discontinuities, spacing of discontinuities in important order. In each step, we proposed the best multiple regression model for RMR system.

  • PDF

Development of a Mechanical Crack Model to Analyze Deformation and Failure Mechanism of Rock (암석의 변형 및 파괴거동의 해석을 위한 균열모형 개발에 관한 연구)

    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.96-106
    • /
    • 1998
  • Rock contains discontinuities at all scales. These discontinuities make rock behave in a complex way. This paper discusses a new approach to underground design based on the theory of rock fracture mechanics. The mechanism of deformation and failure of coal was studied by observing the distributions of length, orientation and spacing of the pre-existing as well as stress-induced cracks. Different types of crack information. The crack information is dependent on the scale used. The cracks propagate along the intersections of the pre-existing cracks, and both extensile and shear crack growth occur depending on the direction of the load relative to the bedding planes. An analytical model that takes into account both shear and extensile crack growth was developed to predict the nonlinear stress-strain behavior of coal including strain-hardening and strain-softening.

  • PDF

A review paper about experimental investigations on failure behaviour of non-persistent joint

  • Shemirani, Alireza Bagher;Haeri, Hadi;Sarfarazi, Vahab;Hedayat, Ahmadreza
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.535-570
    • /
    • 2017
  • There are only few cases where cause and location of failure of a rock structure are limited to a single discontinuity. Usually several discontinuities of limited size interact and eventually form a combined shear plane where failure takes place. So, besides the discontinuities, the regions between adjacent discontinuities, which consist of strong rock and are called material or rock bridges, are of utmost importance for the shear strength of the compound failure plane. Shear behaviour of persistent and non-persistent joint are different from each other. Shear strength of rock mass containing non-persistent joints is highly affected by mechanical behavior and geometrical configuration of non-persistent joints located in a rock mass. Therefore investigation is essential to study the fundamental failures occurring in a rock bridge, for assessing anticipated and actual performances of the structures built on or in rock masses. The purpose of this review paper is to present techniques, progresses and the likely future development directions in experimental testing of non-persistent joint failure behaviour. Experimental results showed that the presence of rock bridges in not fully persistent natural discontinuity sets is a significant factor affecting the stability of rock structures. Compared with intact rocks, jointed rock masses are usually weaker, more deformable and highly anisotropic, depending upon the mechanical properties of each joint and the explicit joint positions. The joint spacing, joint persistency, number of rock joint, angle of rock joint, length of rock bridge, angle of rock bridge, normal load, scale effect and material mixture have important effect on the failure mechanism of a rock bridge.

Geometric Analysis of Fracture System and Suggestion of a Modified RMR on Volcanic Rocks in the Vicinity of Ilgwang Fault (일광단층 인근 화산암 암반사면의 단열계 기하 분석 및 암반 분류 수정안 제시)

  • Chang, Tae-Woo;Lee, Hyeon-Woo;Chae, Byung-Gon;Seo, Yong-Seok;Cho, Yong-Chan
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.483-494
    • /
    • 2007
  • The properties of fracture system on road-cut slopes along the Busan-Ulsan express way under construction are investigated and analyzed. Fracture spacing distributions show log-normal form with extension fractures and negative exponential form with shear fractures. Straight line segments in log-log plots of cumulative fracture length indicate a power-law scaling with exponents of -1.13 in site 1, -1.01 in site 2 and -1.52 in site 3. It is likely that the stability and strength of rock mass are the lowest in site 1 as judged from the analyses of spacing, density and inter-section of fractures in three sites. In contrast, the highest efficiency of the fracture network for conducting fluid flow is seen in site 3 where the largest cluster occupies 73% through the window map. Based on the field survey data, this study modified weighting values of the RMR system using a multiple regression analysis method. The analysis result suggests a modified weighting values of the RMR parameters as follows; 18 for the intact strength of rock; 61 for RQD; 2 for spacing of discontinuities; 2 for the condition of discontinuities; and 17 for ground water.

A study of the Sampling Bias Correction on Joint Data from 1D Survey Line (1D 측선에 의한 절리 자료에 대한 편향 보정 기법에 관한 연구)

  • 엄정기
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.344-352
    • /
    • 2003
  • The procedures to correct sampling biases for discontinuity data obtained from 1D survey line(borehole or scanline) is addressed. The Probability of intersection between the survey line and a circular discontinuity is considered, and a correction far orientation bias is developed assuming discontinuities as equivalent circular disks. The correction incorporates the effect of the angle between the direction of survey line and each discontinuity plane belonging to the discontinuity cluster, size of each discontinuity and length of the survey line. A procedure is provided to estimate unbiased discontinuity spacing parameters using the discontinuity spacing data based on the measurements carried out on a finite length of the survey line.

A Study of Optimal Mesh Interface Region Generation to Improve Spatial and Temporal Accuracy (공간 및 시간 정확도 향상을 위한 최적의 삽간영역 구성에 관한 연구)

  • Cho Kum Won
    • Journal of computational fluids engineering
    • /
    • v.8 no.3
    • /
    • pp.41-49
    • /
    • 2003
  • The spatial accuracy becomes first-order when second-order conservation schemes including the non-conservative interpolation in general Chimera method are used. To ensure the solution accuracy, the discontinuities must be located away from the overlapped regions, and the length of overlapped region also must be proportional to the grid spacing. In this paper, a proposed method, cut-paste algorithm, is used to satisfy above constraints. The cut-paste algorithm can generate the optimal mesh inteface region automatically, To validate the spatial and temporal accuracy due to the non-conservative interpolation, inviscid and viscous problems are tested.