• Title/Summary/Keyword: SpacePropulsion system

Search Result 354, Processing Time 0.024 seconds

Application of Cost Estimation to Space Launch Vehicle Development Program (우주발사체 개발사업의 비용 추정 현황 및 사례)

  • Yoo, Il-Sang;Seo, Yun-Kyoung;Lee, Joon-Ho;Oh, Bum-Seok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.3
    • /
    • pp.165-173
    • /
    • 2007
  • A space launch vehicle system represents a typical example of large-scale multi-disciplinary systems, consisting of subsystems such as mechanical structure, electronics, control, telecommunication, propulsion, material engineering etc. A lot of cost is required to develop the launch vehicle system. A precise planning of R&D cost is very essential to make a success of the launch vehicle development program. Especially in the early development phase of a new space launch vehicle system, cost estimation techniques and analogy from past similar development data are very useful methods to estimate a development cost of the launch vehicle system. Now Korea Aerospace Research Institute is in charge of the KSLV-I (Korea Space Launch Vehicle-I) Program that is a part of Korea National Space program. KSLV-I Program is a national undertaking to develop launch capabilities to deliver science satellites of a 100kg-class into a low earth orbit. It is hereafter, going to plan to develop a new korean space launch vehicle. In this paper, first the development costs of well-known launch vehicles in the world are presented to provide a reference to make a development plan of a new launch vehicle. Second this paper introduces the present status of cost estimation applications at NASA. Finally this paper presents the results from application of a TRANSCOST, a parametric cost model, to derive a cost estimate of a new launch vehicle development, as an example.

Development of a Hall-thruster Propulsion Controller for Science Technology Satellite-3 (과학기술위성3호 홀 추력 제어기 개발)

  • Rhee, Sung-Ho;Cho, Hee-Keun;Lyou, Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.992-997
    • /
    • 2010
  • The Propulsion Control Module(PCM) of Hall-thruster Propulsion System(HPS) for Science and Technology Satellite-3 (STSAT-3) has the flow control accuracy of less than ${\pm}$3% and the pressure control accuracy of less than ${\pm}$5%. The pressure controller adjusts pressure around the set point by using a Proportional Flow Control Valve (PFCV) and a high pressure transducer, while the flow controller regulates the flow rate using PFCV and the anode current telemetry of the Hall Thruster. The controllers are chosen as the Proportional and Integral(PI) type, and the PI gains are tuned based on the Matlab simulations. The result of the PCM test had the flow control accuracy of less than ${\pm}$1.87% and the pressure control accuracy of less than ${\pm}$5%. This paper describes the design, realization, and performance test results of the PCM.

Study on Synchronization Characteristics of a Variable Nozzle in Environment of Simulated Combustion Pressure (연소압 모사 환경 상태의 가변노즐 동기화 특성 연구)

  • Park, Dong-Chang;Lee, Sang-Youn;Lee, Ju-Young;Cho, Sung-Won;Yun, Su-Jin;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.919-921
    • /
    • 2011
  • Variable nozzles are used to enhance the effectiveness of aircraft engines at various altitudes. Unsynchronized movements of variable nozzle flaps affect the direction of thrust in case the variable nozzle consists of many flaps. A synchronization test system was developed to verify the synchronization characteristics of variable nozzle mechanism including flaps. The test system has a capability to simulate combustion pressure in variable nozzle space. The test system was used to qualify the synchronization characteristics of a variable nozzle flaps affected by magnitude and uniformity of simulated combustion pressure, and time delay of each nozzle actuators.

  • PDF

Preliminary Design of High Altitude Test Facility for Kick Motor of KSLV-I Development (KSLV-I 킥모터용 고공환경모사 시험설비 구축을 위한 기본설계)

  • Kim, Yong-Wook;Lee, Jung-Ho;Yu, Byung-Il;Kim, Sang-Heon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.180-187
    • /
    • 2007
  • Korea Aerospace Research Institute(KARI) is developing Korea Space Launch Vehicle(KSLV). KSLV-I is composed of liquid propulsion system for the first stage and apogee kick motor as the second stage. Kick motor has a high expansion ratio nozzle and its starting altitude is 300km high. To verify the performance of kick motor, high altitude test facility (HATF) to simulate its operating condition is necessary. This paper contains preliminary design for construction of HATF.

  • PDF

Comparison of Waterjet Performance for Tracked Vehicle according to the Variation of Impeller Diameter (궤도 차량용 물 분사 추진 장치의 임펠러 직경 변화에 따른 성능 비교)

  • Kim, Hyun-Yul;Kim, Moon-Chan;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.21-27
    • /
    • 2004
  • A waterjet propulsion system has many advantages compared with a conventional screw propeller especially for amphibious military vehicles because of a good maneuverability at low speed, good operating ability at shallow water, high thrust at low speed to aid maneuverability and exit from water, etc. Especially, compact design is important for the tracked-vehicle because of buoyancy in water and available space inside the tracked vehicle. The experiment is parametrically performed for various impeller diameters for more compact design. The experimental results are analyzed according to the ITTC 1996 standard analysis method as well as the conventional propulsive factor analysis method. The full-scale effective and delivered power of the tracked-vehicle are evaluated according to the variation of impeller diameter. This paper emphasized the effect of impeller diameter on the performance of waterjet system.

Performance Test and Calculation of Recirculation Line in Propellant Feeding System (기체공급계 재순환배관의 성능시험 및 계산)

  • Kwon, Oh-Sung;Cho, Nam-Kyung;Chung, Yong-Gahp;Han, Sang-Yeop;Kim, Young-Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.9-17
    • /
    • 2007
  • The performance test of recirculation line in propellant feeding system was carried out. Liquid oxygen was used as cryogenic propellant and helium was used as recirculation promotion gas. Tests were done in cases at atmospheric pressure and at pressure of 4 barg in the ullage space of propellant tank. Liquid oxygen recirculation flowrate with helium injection flowrate and temperature distribution along the line were measured. There was appropriate helium injection flowrate for gas-lift recirculation system. Test data were used to make calculation program by test data correlation method. In this paper the procedure of calculation was presented and the results were compared to test data.

Aerodynamic performance enhancement of cycloidal rotor according to blade pivot point movement and preset angle adjustment

  • Hwang, In-Seong;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.58-63
    • /
    • 2008
  • This paper describes aerodynamic performance enhancement of cycloidal rotor according to the blade pivot point movement and the blade preset angle adjustment. Cycloidal blade system which consists of several blades rotating about an axis in parallel direction and changing its pitch angle periodically, is a propulsion mechanism of a new concept vertical take off and landing aircraft, cyclocopter. Based on the designed geometry of cyclocopter, numerical analysis was carried out by a general purpose commercial CFD program, STAR-CD. According to tills analysis, the efficiency of cycloidal rotor could be improved more than 15% by the introduced methods.

Introduction to Quality Management System of Rocket Fuel at NARO Space Center (나로우주센터의 발사체 연료유 품질관리 과정 소개)

  • Kim Seong-Lyong
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.79-87
    • /
    • 2024
  • The Korean launch vehicle (KSLV-II) has used commercial aviation jet fuel, Jet A-1. Fuel specifications were introduced from Jet A-1 specifications. However, specifications and inspection methods of moisture and particulate matters were changed digitally for convenience and accuracy. To control fuel quality, a fuel management system was established to determine suitability by inspecting it at each stage of warehousing, storage, and application. An analysis room was then established at the Naro Space Center. The possibility of fuel mixing was blocked by warehousing inspection. Long-term component changes were then observed by storage inspection. Finally, suitability of the engine test or the launch vehicle test was determined through application inspection. Long-term analysis verified that the space center's fuel oil storage method was appropriate and that the quality management system was able to handle hundreds of engine tests and several flight tests.

Prediction and Verification of Hover Performance through Multi-Copter Propulsion System Test Results (멀티콥터의 추진 시스템 실험 결과를 통한 제자리 비행 성능 예측 및 검증)

  • Park, Seungho;Go, Yeong-Ju;Ryi, Jaeha;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.527-534
    • /
    • 2018
  • The endurance of the multi-copter is one of the important variables that determine the mission performance. Therefore, accurate endurance should be defined as essential for performing effective missions. In this paper, we present the results of the study on the flight performance of the aircraft, especially the hovering of the drone(multi-copter). Unlike conventional aircraft, which consider aerodynamic performance by the fuselage, the multi-copter is mostly determined by the propulsion system. Therefore, the research method classifies the various parts constituting the drone system into functions, analyzes the performance of the unit parts and obtains the experimental data by sorting out the specifications and functions at the component level and mathematical formulation, The results of this study are as follows. In addition, the 5kg class quad copter was used to predict and verify the voltage change with endurance through analysis of in situ flight. By predicting endurance under various conditions, it can help design/build the right Multi-copter for mission.

Performance Characteristics of Thrust Measurement System for Hot-Firing Test of Small Liquid Propulsion Engines (소형 액체 추진기관 연소 시험을 위한 추력 측정 장치의 성능 특성 연구)

  • Kim, In-Tae;Huh, Hwan-Il;Kim, Jeong-Soo;Jang, Ki-Won;Lee, Jae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.122-129
    • /
    • 2004
  • An accurate thrust measurement is one of the critical paths to the successful test and evaluation program of small liquid propulsion engines. This study describes the design factors for the development of thrust measurement system (TMS) as well as manufacturing practice of TMS hardware. We investigate characteristics of the TMS and its performance through hot-firing test of small liquid engine in a vacuum test cell which is capable of simulating 100,000 ft of altitude or higher. For performance test of TMS, we measure thrusts by changing propellant injection pressure at steady state firing mode as well as at pulse firing mode. Measured eigen frequency of the TMS is 67 Hz. Linearity test of the TMS shows good performance with less than 0.5% of linearity error.