• Title/Summary/Keyword: Space-time decoder

Search Result 59, Processing Time 0.021 seconds

English Performance of MIMO-OFDM Combing Bemaformer with Space-time Decoder in Multiuser Environments (다중 사용자 환경에서 빔 형성기와 결합된 Space-Time decoder을 가진 MIMO-OFDM 시스템의 성능)

  • Kim Chan-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.775-783
    • /
    • 2006
  • In this paper, the new technique combining beamforming with space-time coding is proposed for an orthogonal frequency division multiplexing(OFDM) system with multi-input multi-output(MIMO). When MIMO-OFDM system is employing Nt(the number of transmitterantenna) beamfomers and one S-T decoder at Nr receiver antennas, Nt signals removed CCI are outputted at the beamformer and then diversity gain can be got through space-time decoding. As the proposed technique can reduce cochannel interference and get diversity gain in the multi-user environment, the performance of MIMO-OFDM system is very improved. BER performance improvement and convergence behavior of the proposed approach are investigated through computer simulation by applying it to MIMO-OFDM system in the multi-user environment.

Improved Blind Cyclic Algorithm for Detection of Orthogonal Space-Time Block Codes

  • Le, Minh-Tuan;Pham, Van-Su;Mai, Linh;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.136-140
    • /
    • 2006
  • In this paper, we consider the detection of orthogonal space-time block codes (OSTBCs) without channel state information (CSI) at the receiver. Based on the conventional blind cyclic decoder, we propose an enhanced blind cyclic decoder which has higher system performance than the conventional one. Furthermore, the proposed decoder offers low complexity since it does not require the computation of singular value decomposition.

Low Complexity Decoder for Space-Time Turbo Codes

  • Lee Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.303-309
    • /
    • 2006
  • By combining the space-time diversity technique and iterative turbo codes, space-time turbo codes(STTCS) are able to provide powerful error correction capability. However, the multi-path transmission and iterative decoding structure of STTCS make the decoder very complex. In this paper, we propose a low complexity decoder, which can be used to decode STTCS as well as general iterative codes such as turbo codes. The efficient implementation of the backward recursion and the log-likelihood ratio(LLR) update in the proposed algorithm improves the computational efficiency. In addition, if we approximate the calculation of the joint LLR by using the approximate ratio(AR) algorithm, the computational complexity can be reduced even further. A complexity analysis and computer simulations over the Rayleigh fading channel show that the proposed algorithm necessitates less than 40% of the additions required by the conventional Max-Log-MAP algorithm, while providing the same overall performance.

A Simplified Efficient Algorithm for Blind Detection of Orthogonal Space-Time Block Codes

  • Pham, Van Su;Mai, Linh;Lee, Jae-Young;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.261-265
    • /
    • 2008
  • This work presents a simplified efficient blind detection algorithm for orthogonal space-time codes(OSTBC). First, the proposed decoder exploits a proper decomposition approach of the upper triangular matrix R, which resulted from Cholesky-factorization of the composition channel matrix, to form an easy-to-solve blind detection equation. Secondly, in order to avoid suffering from the high computational load, the proposed decoder applies a sub-optimal QR-based decoder. Computer simulation results verify that the proposed decoder allows to significantly reduce computational complexity while still satisfying the bit-error-rate(BER) performance.

A Study of Ordering Sphere Decoder Class for Space-Time Codes

  • Pham, Van-Su;Mai, Linh;Kabir, S.M. Humayun;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.567-571
    • /
    • 2008
  • In this paper, an overview on the ordering sphere decoder (SD) class for space-time codes (STC) will be presented. In SDs, the ordering techniques are considered as promising methods for reducing complexity by exploiting a sorted list of candidates, thus decreasing the number of tested points. First, we will present the current state of art of SD with their advantages and disadvantages. Then, the overview of simply geometrical approaches for ordering is presented to address the question to overcome the disadvantages. The computer simulation results shown that, thanks to the aid of ordering, the ordering SDs can achieve optimal bit-error-rate (BER) performance while requiring the very low complexity, which is comparable to that of linear sub-optimal decoders.

  • PDF

Serially Concatenated Space-Time Code using Iterative Decoding (반복 복호를 이용한 직렬 연쇄 시.공간 부호)

  • 김웅곤;구본진;양하영;강창언;홍대식
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.83-86
    • /
    • 1999
  • In this paper, a serially concatenated space-time code (SCSTC) with bandwidth efficiency and high data rate is studied. The suggested SCSTC is composed of space-time code, the convolutional code and Interleaver. The SCSTC has a very high BER performance than the conventional space-time code. The BER performance of the suggested SCSTC can be proven by using computer simulation through the iterative decoding method. The first decoder uses Symbol-MAP algorithm and the second decoder uses Bit-MAP algorithm for decoding tile information bits. The simulation results show the performance of the suggested SCSTC is better than the conventional Space-Time Code.

  • PDF

Depth-first branch-and-bound-based decoder with low complexity (검출 복잡도를 감소 시키는 Depth-first branch and bound 알고리즘 기반 디코더)

  • Lee, Eun-Ju;Kabir, S.M.Humayun;Yoon, Gi-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2525-2532
    • /
    • 2009
  • In this paper, a fast sphere decoder is proposed for the joint detection of phase-shift keying (PSK) signals in uncoded Vertical Bell Laboratories Layered Space Time (V-BLAST) systems. The proposed decoder, PSD, consists of preprocessing stage and search stage. The search stage of PSD relies on the depth-first branch-and-bound (BB) algorithm with "best-first" orders stored in lookup tables. Simulation results show that the PSD is able to provide the system with the maximum likelihood (ML) performance at low complexity.

Adaptive Step-size Algorithm for the AIC in the Space-time Coded DS-CDMA System (시공간부호화된 DS-CDMA 시스템에서 적응스텝크기 알고리듬을 적용한 간섭제거수신기)

  • Yi, Joo-Hyun;Lee, Jae-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.265-268
    • /
    • 2004
  • In this paper. we propose an adaptive step-size algorithm for the adaptive interference canceller (AIC) in the space-time trellis coded DS-CDMA system. In the AIC, the performance of the blind LMS algorithms that updates the tap-weight vector of the AIC is heavily dependent on the choice of step-size. To improve the performance of the fixed step-size AIC (FS-AIC), the regular adaptive step-size algorithm is extended in complex domain and applied to the joint AIC and ML decoder scheme. Simulation results show that the joint adaptive step-size AIC (AS-AIC) and ML decoder scheme using the proposed algorithm has boner performance than not only the conventional ML decoder but also the joint FS-AIC and ML decoder scheme without much increase of the decoding delay and complexity.

  • PDF

Low-Complexity Maximum-Likelihood Decoder for V-BLAST Architecture

  • Le, Minh-Tuan;Pham, Van-Su;Mai, Linh;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.126-130
    • /
    • 2005
  • In this paper, a low-complexity maximum-likelihood (ML) decoder based on QR decomposition, called real-valued LCMLDec decoder or RVLCMLDec for short, is proposed for the Vertical Bell Labs Layered Space-Time (V-BLAST) architecture, a promising candidate for providing high data rates in future fixed wireless communication systems [1]. Computer simulations, in comparison with other detection techniques, show that the proposed decoder is capable of providingthe V-BLAST schemes with ML performance at low detection complexity.

  • PDF

Simplified Maximum-Likelihood Decoder for V-BLAST Architecture

  • Le Minh-Tuan;Pham Van-Su;Mai Linh;Yoon Giwan
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.2
    • /
    • pp.76-79
    • /
    • 2005
  • In this paper, a low-complexity maximum-likelihood (ML) decoder based on QR decomposition, called real-valued LCMLDec decoder or RVLCMLDec for short, is proposed for the Vertical Bell Labs Layered Space-Time (V-BLAST) architecture, a promising candidate for providing high data rates in future fixed wireless communication systems [1]. Computer simulations, in comparison with other detection techniques, show that the proposed decoder is capable of providing the V­BLAST schemes with ML performance at low detection complexity