• Title/Summary/Keyword: Space state model

Search Result 1,017, Processing Time 0.029 seconds

Estimation of Bigeye tuna Production Function of Distant Longline Fisheries in WCPFC waters (WCPFC 수역 원양연승어업의 눈다랑어 생산함수 추정)

  • Jo, Heon-Ju;Kim, Do-Hoon;Kim, Doo-Nam;Lee, Sung-Il;Lee, Mi-Kyung
    • Environmental and Resource Economics Review
    • /
    • v.28 no.3
    • /
    • pp.415-435
    • /
    • 2019
  • The purpose of this study is to analyze the returns to scale by estimating the bigeye tuna production function of Korean distant longline fisheries in WCFPC waters. In the analysis, number of crews, vessel tonnage, number of hooks, and bigeye tuna biomass are used as input variables and the catch amount of bigeye tuna is used as an output variable in the Cobb-Douglas production function. Prior to the function estimation, the biomass of bigeye tuna was estimated by the Bayesian state-space model. Results showed that the fixed effect model was selected based on the hausman test, and vessel tonnage, hooks, and biomass would have direct effects on the catch amount. In addition, it was shown that the bigeye tuna distant longline fisheries in WCFPC water would have increasing returns to scale.

Control of Grade Change Operations in Paper Plants Using Model Predictive Control Method (모델예측제어 기법을 이용한 제지공정에서의 지종교체 제어)

  • Kim, Do-Hun;Yeo, Yeong-Gu;Park, Si-Han;Gang, Hong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2003.11a
    • /
    • pp.230-248
    • /
    • 2003
  • In this work an integrated model for paper plants combining wet-end and dry section is developed and a model predictive control scheme based on the plant model is proposed. Closed-loop process identification method is employed to produce a state-space model. Thick stock, filler flow, machine speed and steam pressure are selected as Input variables and basis weight, ash content and moisture content are considered as output variables. The desired output trajectory is constructed in the form of 1st-order dynamics. Results of simulations for control of grade change operations are compared with plant operation data collected during the grade change operations under the same conditions as in simulations. From the comparison, we can see that the proposed model predictive control scheme reduces the grade change time and achieves stable steady-state.

  • PDF

Model Reference Adaptive Control of the Air Flow Rate of Centrifugal Compressor Using State Space Method (상태 공간 기법을 이용한 원심압축기 공기 유량 모델 기반 적응 제어)

  • Han, Jaeyoung;Jung, Mooncheong;Yu, Sangseok;Yi, Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.535-542
    • /
    • 2016
  • In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.

Adaptive State Feedback Control for Nonlinear Rotary Inverted Pendulum System using Similarity Transformation Method: Implementation of Real-Time Experiment (유사변환기법을 이용한 비선형 회전식 역진자의 적응형 상태궤환 제어시스템: 실시간 실험 구현)

  • Cho, Hyun-Cheol;Lee, Young-Jin;Lee, Kwon-Soon;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.130-135
    • /
    • 2009
  • In recent years, researches on rotary inverted pendulum control systems have been significantly focused due their highly nonlinear dynamics and complicated geometric structures. This paper presents a novel control approach for such systems by means of similarity transformation theory. At first, we represent nonlinear system dynamics to the controllability-formed state space model including a time-varying parameter vector. We establish the state-feedback control configuration based on the transformed model and derive an adaptive control law for adjusting desired characteristic equation. Numerical analysis is achieved to evaluate our control method and demonstrate its superiority by comparing it to the traditional control strategy. Furthermore, real-time control experiment is carried out to test its practical reliability.

Servo Design for High-TPI Hard Disk Drives Using a Delay-Accommodating State Estimator

  • Kim, Young-Hoon;Chu, Sang-Hoon;Kang, S.W.;Oh, D.H.;Han, Y.S.;Hwang, T.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.134-139
    • /
    • 2002
  • This paper presents a servo design method for high track-density hard disk drives, in which the plant time delay, mainly due to the processor computation time, is taken into account. The key idea behind the proposed design method is to incorporate the delay model into the output equation of the state-space representation for the plant model; thereby, the delay is accounted for by a standard state observer in a natural manner, with simplified state equations as compared to those for conventional methods. The results from practical application confirm that the proposed method is quite effective in realizing a high-bandwidth servo system in hard disk drives.

  • PDF

Development of a Control Module in Multibody Dynamics Program CADyna (다물체동역학 해석 프로그램 CADyna의 제어모듈 개발)

  • 김승오;전경진;손정현;유완석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.106-113
    • /
    • 2002
  • A procedure to model and simulate control systems is presented using CADyna and MATLAB/Simulink computer codes. For the plant modeling, a technique for obtaining the state matrices from CADyna is presented. To obtain state matrices from CADyna models, perturbation theory is used. These state matrices are then used in NATLAB to design a controller for the plant. The controller design can subsequently be incorporated into the CADyna model and its closed loop performance is evaluated. Examples are presented to verify the developed methodology.

Design of Automatic Control System for Ship Stabilization (선박 안정화를 위한 자동제어설계에 대하여)

  • 박정후
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.11 no.1
    • /
    • pp.26-31
    • /
    • 1975
  • Mordern Ocean-going ships utilize stabilization techniques in order to minimize the effects of oscillations due to the unwanted disturbances. In this paper, as an elementary design of automatic control system with linear-state vari;tble feedback and series compensator for ship stabilization, analysis and design is limited to the linear time-invariant single input and output system. In order for the Controlled system to meet the requirements of stability, accuracy and transient response, a model of the automatic control system is proposed. For the analysis and design of this model, the state-space method, that is, the mordern way, or an alternative to the transfer function method of describing a linear system that utilize the state variables and state equations, is applied.

  • PDF

The Research on the Modeling and Parameter Optimization of the EV Battery (전기자동차 배터리 모델링 및 파라미터 최적화 기법 연구)

  • Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.227-234
    • /
    • 2020
  • This paper presents the methods for the modeling and parameter optimization of the electric vehicle battery. The state variables of the battery are defined, and the test methods for battery parameters are presented. The state-space equation, which consists of four state variables, and the output equation, which is a combination of to-be-determined parameters, are shown. The parameter optimization method is the key point of this study. The least square of the modeling error can be used as an initial value of the multivariable function. It is equivalent to find the minimum value of the error function to obtain optimal parameters from multivariable function. The SIMULINK model is presented, and the 10-hour full operational range test results are shown to verify the performance of the model. The modeling error for 25 degrees is approximately 1% for full operational ranges. The comments to enhance modeling accuracy are shown in the conclusion.

Real Time Estimation in 1-Dimensional Temperature Distribution Using Modal Analysis and Observer (모드해석과 관측기를 이용한 1차원 온도분포의 실시간 예측)

  • An, Jung-Yong;Park, Yeong-Min;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.195-201
    • /
    • 2001
  • An inverse heat conduction problem(IHCP) arises when unknown heat fluxes and whole temperature field are to be found with temperature measurements of a few points. In this paper, observers are proposed as solution algorithm for the IHCP. A 1-dimensional heat transfer problem is modeled with modal analysis and state space equations. Position of the heat source is estimated through test heat inputs and the autocorrelation among a few of temperature data. The modified Bass-Gura method is used to design a state observer to estimate the intensity of heat source and the whole temperature field of a 1-dimensional body. To verify the reliability of this estimator, analytic solutions obtained from the proposed method are compared.

상태궤환을 이용한 2차원 시스템의 극배치

  • 이원규;이상혁
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.8
    • /
    • pp.659-666
    • /
    • 1990
  • Curing recent years, several state-space models describing discrete two dimensional systems are proposed. In this paper, we consider the problem of pole assignment of two dimensional systems using state feedback, based on state-space model proposed by Roessser. The design procedure is seperated into two steps. in thie first step, the sufficient condition for off diagonal matrix of the input transformed system to be zero is derived and in the second step, it is shown that the pole assignment problem of two dimensional systems is divided into the one of two 1-dimensional systems. Finally, a numerical example for illustrating the technique is given.

  • PDF