본 논문에서는 별도의 센서 없이 영상만을 이용하여 실시간으로 손 영상을 인식하는 알고리즘을 제안한다. 손은 모양이 매우 복잡하기 때문에 2차원 모양의 불변량에 해당하는 에지의 방향성 히스토그램을 이용하여 인식을 행한다. 이 방법은 복잡한 배경에서 색상정보를 이용하여 손 영역이 정확히 추출되며 계산량이 적고 조명변화에 덜 민감하기 때문에 실시간 손 영상 인식에 적합하다. 본 논문에서는 손의 모양제시 방향이 변하는 경우에도 인식을 가능하게 하기 위해 주성분 분석법을 사용하여 인식오차를 줄이는 방법을 기술한다. 이 방법을 사용함으로써 손 영상이 3차원적으로 회전에 의해 변하는 경우도 인식가능하게 되었다. 또한 에지방향성 데이터를 이용하기에 주성분 공간 생성 시간을 현저히 줄이게 되었다.
In this paper, we propose the location measurement algorithm of unknown tag based on RFID (Radio-Frequency IDentification) by using RSSI (Received Signal Strength Indication) and TDOA (Time Difference of Arrival) and extended Kalman filter in smart space. To do this, first, we recognize the location of unknown tag by using the RSSI and TDOA recognition methods. Second, we set the coordinate of the tag location measured by using trilateration and SX algorithm. But the tag location data measured by this method are included complex environmental error. So, we use the extended Kalman filter in order to revise error data of the tag location. Finally, we validate the applicability of the proposed method though the simulation in a complex environment.
International Journal of Fuzzy Logic and Intelligent Systems
/
제6권4호
/
pp.293-298
/
2006
In this paper, a sensor fusion based robot navigation method for the autonomous control of a miniature human interaction robot is presented. The method of navigation blends the optimality of the Fuzzy Neural Network(FNN) based control algorithm with the capabilities in expressing knowledge and learning of the networked Intelligent Robotic Space(IRS). States of robot and IR space, for examples, the distance between the mobile robot and obstacles and the velocity of mobile robot, are used as the inputs of fuzzy logic controller. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. To identify the environments, a sensor fusion technique is introduced, where the sensory data of ultrasonic sensors and a vision sensor are fused into the identification process. Preliminary experiment and results are shown to demonstrate the merit of the introduced navigation control algorithm.
In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.
In this paper, we have implemented speeches that utilized the emotion information of the user's speech and image matching and recommendation system. To classify the user's emotional information of speech, the emotional information of speech about the user's speech is extracted and classified using the PLP algorithm. After classification, an emotional DB of speech is constructed. Moreover, emotional color and emotional vocabulary through factor analysis are matched to one space in order to classify emotional information of image. And a standardized image recommendation system based on the matching of each keyword with the BM-GA algorithm for the data of the emotional information of speech and emotional information of image according to the more appropriate emotional information of speech of the user. As a result of the performance evaluation, recognition rate of standardized vocabulary in four stages according to speech was 80.48% on average and system user satisfaction was 82.4%. Therefore, it is expected that the classification of images according to the user's speech information will be helpful for the study of emotional exchange between the user and the computer.
지능형 교통 시스템(ITS) 및 지능형 자동차의 운전자 보조 시스템에서 차선의 경계를 검출하기 위한 허프 변환 방법이 많이 연구되고 있다. 이 방법의 경우 차선을 효과적으로 인식하지만 차선 이외의 영역의 직선들도 인식할 수 있기 때문에 인식률이 떨어질 수 있고 연산속도가 늦어진다. 본 논문에서는 이러한 문제를 해결하기 위해 Hough space에 Accumulator cells를 최적화한 방법을 이용해서 차선 경계를 인식하는 알고리즘을 제안하였다. 이를 바탕으로 H/W 검증을 통해 안드로이드용 어플리케이션을 개발하였다. 스마트 기기의 사용자라면 언제 어디서든 운전자의 주행안전을 위한 차선검출 및 차선이탈 경보시스템을 사용 할 수 있도록 하였다. 소프트웨어 검증은 OpenCV를 사용하여 93.1%의 높은 차선인식률을 보였으며, 하드웨어 실시간 검증은 안드로이드용 휴대폰을 사용하여 68.89%의 차선인식률을 보였다.
본 논문은 공중 혹은 해상배경에 표적과 화염이 동시에 존재할 때, 무인항공기에 장착된 EOTS(Electro-Optical Targeting System; 전자광학 추적장비)가 표적을 추적하기 위해 화염의 영향에 강건하도록 표적을 자동 인식하는 기법을 제안한다. 제안한 기법은 표적과 화염의 적외선 영상을 Gradient Vector Field로 변환하고, 각 Gradient magnitude를 Polynomial Curve Fitting 도구에 적용하여 다항식 계수를 추출 및 얕은 신경망 모델에 학습함으로써, 표적과 화염을 자동으로 인식한다. 확보한 표적 및 화염의 다양한 적외선 영상 DB를 학습데이터, 검증데이터, 시험데이터로 분류하여 제안한 기법의 표적 및 화염 자동 인식 성능을 확인하였다. 본 알고리듬을 활용하여 무인항공기의 자동비행 중 충돌회피, 산불탐지, 공중 및 해상의 목표물을 자동탐지 및 인식하는 분야에 적용될 수 있다.
Subspace analysis (which includes PCA) seeks for feature subspace (which corresponds to the eigenspace), given multivariate input data and has been widely used in computer vision and pattern recognition. Typically data space belongs to very high dimension, but only a few principal components need to be extracted. In this paper I present a fast sequential algorithm for subspace analysis or tracking. Useful behavior of the algorithm is confirmed by numerical experiments.
본 논문에서는 음성인식 시스템을 구현함에 있어 중요한 특징 파라미터와 학습, 인식 알고리즘의 선택을 위한 제안을 하기 위하여 각각 세 가지의 방법을 조합하여 인식 실험을 수행하고 검토하였다. 두 종류의 실험을 통하여 하드웨어 장치로 구현할 경우 보다 효과적인 음성 인식 시스템을 제안한다. 첫 번째로는 특징 파라미터의 성능을 평가하기 위하여 기존의 MFCC와 MFCC를 PCA와 ICA를 이용하여 특징 공간을 변화시킨 새로운 특징 파라미터를 제안하여 총 3종류의 특징파라미터에 대한 인식 실험을 수행하였으며, 두 번째로는 학습데이터 수에 따른 HMM, SVM, RVM의 인식 성능을 실험하였다. 이상의 실험에 의하여 ICA에 의한 특징 파라미터가 특징 공간상에서의 높은 선형 분별성에 의해 MFCC와 비교하여 평균 1.5%의 성능향상을 확인할 수 있었으며 학습데이터의 감소에 따른 인식실험에서는 HMM과 비교하여 RVM에서 최고 3.25%의 성능향상을 확인하였다. 이에 근거하여 TI사의 DSP(TMS320C32)를 사용하여 음성 인식기를 구현하여 실시간으로 실험하여 시뮬레이션과 비교하였다. 이와 같은 결과로서 본 논문에서 제안하는 음성인식시스템을 위한 효과적인 방법은 ICA를 이용한 특징 파라미터를 추출하고 RVM을 이용하여 인식을 수행하는 것이라 판단한다.
본 논문에서는 주행하는 차량에 탑재된 카메라에서 획득한 도로 영상에서 차선의 색상을 판별하는 방법을 제안하였다. 자동차의 자율주행기술에 있어 차선 정보는 차선이탈방지(ldws), 능동적 차선유지(lkas), 고속도로주행보조(hda) 등의 자율주행의 레벨(level)이 올라갈수록 중요하다. 특히 차선의 색상, 특히 흰색 및 황색 차선의 구별은 교통사고와 직접적인 관련이 있는 정보이기에 더욱 필요한 기술이다. 본 논문에서는 주행 차선 검출 결과를 기반으로 차선 및 도로의 관심 영역을 추출하고 각 영역의 컬러 정보를 2차원 S-색상 공간으로 투영하였다. S-공간에 투영된 색상의 특징 분포에서 개선된 mean-shift 알고리즘을 이용하여 특징의 무게중심을 구하였다. 좌, 우 차선과 도로영역의 색상특징의 중심점들 사이의 거리 정보를 이용하여 차선의 색상을 판별하였다. 다양한 조명환경에서 약 97%의 색상 인식 성공률을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.