• 제목/요약/키워드: Space recognition algorithm

검색결과 259건 처리시간 0.026초

멀티미디어 시스템을 위한 영상내의 손 인식에 관한 연구 (A Study on Hand Recognition in Image for Multimedia System)

  • 정혜원;양환석
    • 한국콘텐츠학회논문지
    • /
    • 제5권2호
    • /
    • pp.267-274
    • /
    • 2005
  • 본 논문에서는 별도의 센서 없이 영상만을 이용하여 실시간으로 손 영상을 인식하는 알고리즘을 제안한다. 손은 모양이 매우 복잡하기 때문에 2차원 모양의 불변량에 해당하는 에지의 방향성 히스토그램을 이용하여 인식을 행한다. 이 방법은 복잡한 배경에서 색상정보를 이용하여 손 영역이 정확히 추출되며 계산량이 적고 조명변화에 덜 민감하기 때문에 실시간 손 영상 인식에 적합하다. 본 논문에서는 손의 모양제시 방향이 변하는 경우에도 인식을 가능하게 하기 위해 주성분 분석법을 사용하여 인식오차를 줄이는 방법을 기술한다. 이 방법을 사용함으로써 손 영상이 3차원적으로 회전에 의해 변하는 경우도 인식가능하게 되었다. 또한 에지방향성 데이터를 이용하기에 주성분 공간 생성 시간을 현저히 줄이게 되었다.

  • PDF

스마트 스페이스에서 미지의 태그 위치 오차 보정 (Error Revision of the Unknown Tag Location in Smart Space)

  • 탁명환;지석근;주영훈
    • 제어로봇시스템학회논문지
    • /
    • 제16권2호
    • /
    • pp.158-163
    • /
    • 2010
  • In this paper, we propose the location measurement algorithm of unknown tag based on RFID (Radio-Frequency IDentification) by using RSSI (Received Signal Strength Indication) and TDOA (Time Difference of Arrival) and extended Kalman filter in smart space. To do this, first, we recognize the location of unknown tag by using the RSSI and TDOA recognition methods. Second, we set the coordinate of the tag location measured by using trilateration and SX algorithm. But the tag location data measured by this method are included complex environmental error. So, we use the extended Kalman filter in order to revise error data of the tag location. Finally, we validate the applicability of the proposed method though the simulation in a complex environment.

Fuzzy Neural Network Based Sensor Fusion and It's Application to Mobile Robot in Intelligent Robotic Space

  • Jin, Tae-Seok;Lee, Min-Jung;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권4호
    • /
    • pp.293-298
    • /
    • 2006
  • In this paper, a sensor fusion based robot navigation method for the autonomous control of a miniature human interaction robot is presented. The method of navigation blends the optimality of the Fuzzy Neural Network(FNN) based control algorithm with the capabilities in expressing knowledge and learning of the networked Intelligent Robotic Space(IRS). States of robot and IR space, for examples, the distance between the mobile robot and obstacles and the velocity of mobile robot, are used as the inputs of fuzzy logic controller. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. To identify the environments, a sensor fusion technique is introduced, where the sensory data of ultrasonic sensors and a vision sensor are fused into the identification process. Preliminary experiment and results are shown to demonstrate the merit of the introduced navigation control algorithm.

PCA와 LDA를 결합한 데이터 전 처리와 다항식 기반 RBFNNs을 이용한 얼굴 인식 알고리즘 설계 (Design of Face Recognition algorithm Using PCA&LDA combined for Data Pre-Processing and Polynomial-based RBF Neural Networks)

  • 오성권;유성훈
    • 전기학회논문지
    • /
    • 제61권5호
    • /
    • pp.744-752
    • /
    • 2012
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.

A Study on Image Recommendation System based on Speech Emotion Information

  • Kim, Tae Yeun;Bae, Sang Hyun
    • 통합자연과학논문집
    • /
    • 제11권3호
    • /
    • pp.131-138
    • /
    • 2018
  • In this paper, we have implemented speeches that utilized the emotion information of the user's speech and image matching and recommendation system. To classify the user's emotional information of speech, the emotional information of speech about the user's speech is extracted and classified using the PLP algorithm. After classification, an emotional DB of speech is constructed. Moreover, emotional color and emotional vocabulary through factor analysis are matched to one space in order to classify emotional information of image. And a standardized image recommendation system based on the matching of each keyword with the BM-GA algorithm for the data of the emotional information of speech and emotional information of image according to the more appropriate emotional information of speech of the user. As a result of the performance evaluation, recognition rate of standardized vocabulary in four stages according to speech was 80.48% on average and system user satisfaction was 82.4%. Therefore, it is expected that the classification of images according to the user's speech information will be helpful for the study of emotional exchange between the user and the computer.

Accumulator cells를 최적화한 안드로이드 기반의 차선 검출 시스템 개발 (Lane Detection System Development based on Android using Optimized Accumulator Cells)

  • 척트바타르 엘뎅토야;장영민;조재현;조상복
    • 전자공학회논문지
    • /
    • 제51권1호
    • /
    • pp.126-136
    • /
    • 2014
  • 지능형 교통 시스템(ITS) 및 지능형 자동차의 운전자 보조 시스템에서 차선의 경계를 검출하기 위한 허프 변환 방법이 많이 연구되고 있다. 이 방법의 경우 차선을 효과적으로 인식하지만 차선 이외의 영역의 직선들도 인식할 수 있기 때문에 인식률이 떨어질 수 있고 연산속도가 늦어진다. 본 논문에서는 이러한 문제를 해결하기 위해 Hough space에 Accumulator cells를 최적화한 방법을 이용해서 차선 경계를 인식하는 알고리즘을 제안하였다. 이를 바탕으로 H/W 검증을 통해 안드로이드용 어플리케이션을 개발하였다. 스마트 기기의 사용자라면 언제 어디서든 운전자의 주행안전을 위한 차선검출 및 차선이탈 경보시스템을 사용 할 수 있도록 하였다. 소프트웨어 검증은 OpenCV를 사용하여 93.1%의 높은 차선인식률을 보였으며, 하드웨어 실시간 검증은 안드로이드용 휴대폰을 사용하여 68.89%의 차선인식률을 보였다.

적외선 영상을 이용한 Gradient Vector Field 기반의 표적 및 화염 자동인식 연구 (A Study of Automatic Recognition on Target and Flame Based Gradient Vector Field Using Infrared Image)

  • 김춘호;이주영
    • 한국항공우주학회지
    • /
    • 제49권1호
    • /
    • pp.63-73
    • /
    • 2021
  • 본 논문은 공중 혹은 해상배경에 표적과 화염이 동시에 존재할 때, 무인항공기에 장착된 EOTS(Electro-Optical Targeting System; 전자광학 추적장비)가 표적을 추적하기 위해 화염의 영향에 강건하도록 표적을 자동 인식하는 기법을 제안한다. 제안한 기법은 표적과 화염의 적외선 영상을 Gradient Vector Field로 변환하고, 각 Gradient magnitude를 Polynomial Curve Fitting 도구에 적용하여 다항식 계수를 추출 및 얕은 신경망 모델에 학습함으로써, 표적과 화염을 자동으로 인식한다. 확보한 표적 및 화염의 다양한 적외선 영상 DB를 학습데이터, 검증데이터, 시험데이터로 분류하여 제안한 기법의 표적 및 화염 자동 인식 성능을 확인하였다. 본 알고리듬을 활용하여 무인항공기의 자동비행 중 충돌회피, 산불탐지, 공중 및 해상의 목표물을 자동탐지 및 인식하는 분야에 적용될 수 있다.

SEQUENTIAL EM LEARNING FOR SUBSPACE ANALYSIS

  • Park, Seungjin
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.698-701
    • /
    • 2002
  • Subspace analysis (which includes PCA) seeks for feature subspace (which corresponds to the eigenspace), given multivariate input data and has been widely used in computer vision and pattern recognition. Typically data space belongs to very high dimension, but only a few principal components need to be extracted. In this paper I present a fast sequential algorithm for subspace analysis or tracking. Useful behavior of the algorithm is confirmed by numerical experiments.

  • PDF

RVM을 이용한 음성인식기의 구현 (Implementation of Speech Recognizer using Relevance Vector Machine)

  • 김창근;고시영;허강인;이광석
    • 한국정보통신학회논문지
    • /
    • 제11권8호
    • /
    • pp.1596-1603
    • /
    • 2007
  • 본 논문에서는 음성인식 시스템을 구현함에 있어 중요한 특징 파라미터와 학습, 인식 알고리즘의 선택을 위한 제안을 하기 위하여 각각 세 가지의 방법을 조합하여 인식 실험을 수행하고 검토하였다. 두 종류의 실험을 통하여 하드웨어 장치로 구현할 경우 보다 효과적인 음성 인식 시스템을 제안한다. 첫 번째로는 특징 파라미터의 성능을 평가하기 위하여 기존의 MFCC와 MFCC를 PCA와 ICA를 이용하여 특징 공간을 변화시킨 새로운 특징 파라미터를 제안하여 총 3종류의 특징파라미터에 대한 인식 실험을 수행하였으며, 두 번째로는 학습데이터 수에 따른 HMM, SVM, RVM의 인식 성능을 실험하였다. 이상의 실험에 의하여 ICA에 의한 특징 파라미터가 특징 공간상에서의 높은 선형 분별성에 의해 MFCC와 비교하여 평균 1.5%의 성능향상을 확인할 수 있었으며 학습데이터의 감소에 따른 인식실험에서는 HMM과 비교하여 RVM에서 최고 3.25%의 성능향상을 확인하였다. 이에 근거하여 TI사의 DSP(TMS320C32)를 사용하여 음성 인식기를 구현하여 실시간으로 실험하여 시뮬레이션과 비교하였다. 이와 같은 결과로서 본 논문에서 제안하는 음성인식시스템을 위한 효과적인 방법은 ICA를 이용한 특징 파라미터를 추출하고 RVM을 이용하여 인식을 수행하는 것이라 판단한다.

조명변화에 강인한 S-색상공간 기반의 차선색상 판별 방법 (Illumination-Robust Load Lane Color Recognition based on S-color Space)

  • 백승해;김염;이근모;박순용
    • 한국정보통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.434-442
    • /
    • 2018
  • 본 논문에서는 주행하는 차량에 탑재된 카메라에서 획득한 도로 영상에서 차선의 색상을 판별하는 방법을 제안하였다. 자동차의 자율주행기술에 있어 차선 정보는 차선이탈방지(ldws), 능동적 차선유지(lkas), 고속도로주행보조(hda) 등의 자율주행의 레벨(level)이 올라갈수록 중요하다. 특히 차선의 색상, 특히 흰색 및 황색 차선의 구별은 교통사고와 직접적인 관련이 있는 정보이기에 더욱 필요한 기술이다. 본 논문에서는 주행 차선 검출 결과를 기반으로 차선 및 도로의 관심 영역을 추출하고 각 영역의 컬러 정보를 2차원 S-색상 공간으로 투영하였다. S-공간에 투영된 색상의 특징 분포에서 개선된 mean-shift 알고리즘을 이용하여 특징의 무게중심을 구하였다. 좌, 우 차선과 도로영역의 색상특징의 중심점들 사이의 거리 정보를 이용하여 차선의 색상을 판별하였다. 다양한 조명환경에서 약 97%의 색상 인식 성공률을 보였다.