• Title/Summary/Keyword: Space and time-lag

Search Result 58, Processing Time 0.032 seconds

Correlation Between Collimation-Corrected Peak Luminosity and Spectral Lag of Gamma-ray Bursts in the Source Frame

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.253-258
    • /
    • 2012
  • We revisit the relation between the peak luminosity $L_{iso}$ and the spectral time lag in the source frame. Since gamma-ray bursts (GRBs) are generally thought to be beamed, it is natural to expect that the collimation-corrected peak luminosity may well correlate with the spectral time lag in the source frame if the lag-luminosity relation in the GRB source frame exists. With 12 long GRBs detected by the Swift satellite, whose redshift and spectral lags in the source frame are known, we computed $L_{0,H}$ and $L_{0,W}$ using bulk Lorentz factors ${\Gamma}_{0,H}$ and ${\Gamma}_{0,W}$ archived in the published literature, where the subscripts H and W represent homogeneous and wind-like circumburst environments, respectively. We have confirmed that the isotropic peak luminosity correlates with the spectral time lag in the source frame. We have also confirmed that there is an anti-correlation between the source-frame spectral lag and the peak energy, $E_{peak}$ (1 + z) in the source frame. We have found that the collimation-corrected luminosity correlates in a similar way with the spectral lag, except that the correlations are somewhat less tight. The correlation in the wind density profile seems to agree with the isotropic peak luminosity case better than in the homogeneous case. Finally we conclude by briefly discussing its implications.

An Optimal Fixed-lag FIR Smoother for Discrete Time-varying State Space Models (이산 시변 상태공간 모델을 위한 최적 고정 시간 지연 FIR 평활기)

  • Kwon, Bo-Kyu;Han, Soohee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • In this paper, we propose an optimal fixed-lag FIR (Finite-Impulse-Response) smoother for a class of discrete time-varying state-space signal models. The proposed fixed-lag FIR smoother is linear with respect to inputs and outputs on the recent finite horizon and estimates the delayed state so that the variance of the estimation error is minimized with the unbiased constraint. Since the proposed smoother is derived with system inputs, it can be adapted to feedback control system. Additionally, the proposed smoother can give more general solution than the optimal FIR filter, because it reduced to the optimal FIR filter by setting the fixed-lag size as zero. A numerical example is presented to illustrate the performance of the proposed smoother by comparing with an optimal FIR filter and a conventional fixed-lag Kalman smoother.

A study on the compensator design of the quasi-resonant SMPS (유사공진형 SMPS의 보상기 설계에 관한 연구)

  • Lim, I.S.;Huh, U.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.720-725
    • /
    • 1991
  • In this thesis, the lead-lag compensator is designed to improve output characteristics of flyback zero voltage switching quasi-resonant converters. The switch and the diode are assumed ideally. And the SMPS is modelled by state equations with four operation modes. And the model for controller design is also achived by using a state space averaging method, which is continuous time average of state variables every period. The lag, the lead and the lead-lag compensator is designed the SMPS respectively. The time domain analysis and the frequency domain analysis are done for each compensated circuit. It is possible increasing the phase margin and improving the transient response by the compensators. The phase lag compensator has small overshoot comparatively. But the bandwidth is narrower than the others, so it has longest settling time. For the phase lead compensator, the response come to steady-state within short period. But the overshoot is the largest due to its large peak gain. Finally, the phase lead-lag compensator has medium characteristics in the overshoot and the settling time.

  • PDF

Attitude Controller Design for a Bias Momentum Satellite with Double Gimbal (더블김벌을 장착한 바이어스 모멘텀 위성의 자세제어기 설계)

  • Park, Young-Woong;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.34-42
    • /
    • 2004
  • In this paper, a double gimbal is used for roll/yaw attitude control of spacecraft and two feedback controllers are designed. One is a PD controller of no phase difference between roll and yaw control input. The other is a PD controller with a phase lag compensator about the yaw control input. The phase lag compensator is designed a first order system and a lag parameter is designed for the control of yaw angle. There are two case simulations for each of controllers; constant disturbance torques and initial errors of nutation. We obtain the results through simulations that a steady-state error and a rising time of yaw angle are developed by the compensator. In this paper, simulation parameters use the values of KOREASAT 1.

Improved Receding Horizon Fourier Analysis for Quasi-periodic Signals

  • Kwon, Bo-Kyu;Han, Soohee;Han, Sekyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.378-384
    • /
    • 2017
  • In this paper, an efficient short-time Fourier analysis method for the quasi-periodic signals is proposed via an optimal fixed-lag finite impulse response (FIR) smoother approach using a receding horizon scheme. In order to deal with time-varying Fourier coefficients (FCs) of quasi-periodic signals, a state space model including FCs as state variables is augmented with the variants of FCs. Through an optimal fixed-lag FIR smoother, FCs and their increments are estimated simultaneously and combined to produce final estimates. A lag size of the optimal fixed-lag FIR smoother is chosen to minimize the estimation error. Since the proposed estimation scheme carries out the correction process with the estimated variants of FCs, it is highly probable that the smaller estimation error is achieved compared with existing approaches not making use of such a process. It is shown through numerical simulation that the proposed scheme has better tracking ability for estimating time-varying FCs compared with existing ones.

A Study on the Method of Equilibrium-Pressure Prediction from Transient Data (과도상태의 압력데이터로부터 평형상태 압력 예측방법 연구)

  • Lee, Jong-Kook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.19-28
    • /
    • 2004
  • This study is concerned with the method of equilibrium-pressure prediction from transient data. Pressure measurement system consisted of pressure sensor and pressure tube. The surface orifice where pressure is measured is connected to a pressure sensor by a tube. In case of high orifice pressure, the pressure sensor responds rapidly to the orifice pressure. But when the orifice pressure is low the pressure sensor does not respond rapidly to the orifice pressure and time lag occurs seriously. Various test conditions are applied to investigate the time lag and to assess the methods of equilibrium-pressure prediction. The test time of the low-pressure measurement can be reduced by the method of equilibrium-pressure prediction of the present study.

Two-Stage Estimator Design Using Stable Recursive FIR Filter and Smoother

  • Kim, Jong-Ju;Kim, Jae-Hun;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2532-2537
    • /
    • 2005
  • FIR(Finite Impulse Response) filter is well known to be ideal for the finite time state-space model, but it requires much computation due to its inherent non-recursive structure especially when the measurement interval grows to a large extent. And often a fixed-lag smoother based on the finite time interval is needed to monitor the soundness of the system model and the measurement model, but the computation burden of FIR-type smoother imposes much restriction of its usage for real-time application. Conventional recursive forms of FIR estimator[1]-[4] could not be used for real time applications, since they are numerically unstable in their recursive equations. To cope with this problem, we suggest a stable recursive form FIR estimator(SRFIR) and its usefulness is demonstrated for designing the real-time fixed-lag smoother on the finite time window through an example of detection of rate bias in the anti-aircraft gun fire control system.

  • PDF

A Study of the Heat Conduction Phenomena with a Phase Lag of Heat Flux (열유속 상지연이 존재하는 열전도 현상에 대한 연구)

  • Jin, Chang-Fu;Kim, Kyung-Kun;Chung, Han-Shik;Jeong, Hyo-Min;Choi, Du-Yeol;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.684-690
    • /
    • 2008
  • In most engineering applications related with the heat conduction phenomena, a conventional Fourier heat conduction equation has been successfully applied and it has supplied quite reasonable results. However, it is well known that the Fourier heat conduction equation is failed in the application to the extremely small space and short time, in other words, a nano-scale system and a pico-second time. In this study, non-Fourier effect was evaluated in the heat conduction by considering the concept of a phase lag model. The results show the existence of a heat wave, which means that the heat is transferred with a finite speed while an infinite speed of heat transfer is assumed in the conventional Fourier heat conduction. In addition, the copper and the gold are tested to evaluate the phase lag time between the heat flux and the temperature gradient. The results show that the gold has the heat wave speed faster than that of the copper consistent with the prediction based on an actual experiment.

Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories

  • Ezzat, M.A.;El-Bary, A.A.
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.297-307
    • /
    • 2017
  • A unified mathematical model of phase-lag Green-Naghdi magneto-thermoelasticty theories based on fractional derivative heat transfer for perfectly conducting media in the presence of a constant magnetic field is given. The GN theories as well as the theories of coupled and of generalized magneto-thermoelasticity with thermal relaxation follow as limit cases. The resulting nondimensional coupled equations together with the Laplace transforms techniques are applied to a half space, which is assumed to be traction free and subjected to a thermal shock that is a function of time. The inverse transforms are obtained by using a numerical method based on Fourier expansion techniques. The predictions of the theory are discussed and compared with those for the generalized theory of magneto-thermoelasticity with one relaxation time. The effects of Alfven velocity and the fractional order parameter on copper-like material are discussed in different types of GN theories.

Variation of Magnetic Field (By, Bz) Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

  • Moon, Ga-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.2
    • /
    • pp.123-132
    • /
    • 2011
  • It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF) component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are divided into three types, which are coronal mass ejection (CME)-driven storms, co-rotating interaction region (CIR)-driven storms, and complicated type storms. Complicated types were not included in this study. For this purpose, the manner in which the direction change of IMF $B_y$ and $B_z$ components (in geocentric solar magnetospheric coordinate system coordinate) during the main phase is related with the development of the storm is examined. The time-integrated solar wind parameters are compared with the time-integrated disturbance storm time (Dst) index during the main phase of each magnetic storm. The time lag with the storm size is also investigated. Some results are worth noting: CME-driven storms, under steady conditions of $B_z$ < 0, represent more than half of the storms in number. That is, it is found that the average number of storms for negative sign of IMF $B_z$ (T1~T4) is high, at 56.4%, 53.0%, and 63.7% in each storm category, respectively. However, for the CIR-driven storms, the percentage of moderate storms is only 29.2%, while the number of intense storms is more than half (60.0%) under the $B_z$ < 0 condition. It is found that the correlation is highest between the time-integrated IMF $B_z$ and the time-integrated Dst index for the CME-driven storms. On the other hand, for the CIR-driven storms, a high correlation is found, with the correlation coefficient being 0.93, between time-integrated Dst index and time-integrated solar wind speed, while a low correlation, 0.51, is found between timeintegrated $B_z$ and time-integrated Dst index. The relationship between storm size and time lag in terms of hours from $B_z$ minimum to Dst minimum values is investigated. For the CME-driven storms, time lag of 26% of moderate storms is one hour, whereas time lag of 33% of moderate storms is two hours for the CIR-driven storms. The average values of solar wind parameters for the CME and CIR-driven storms are also examined. The average values of ${\mid}Dst_{min}{\mid}$ and ${\mid}B_{zmin}{\mid}$ for the CME-driven storms are higher than those of CIR-driven storms, while the average value of temperature is lower.