• Title/Summary/Keyword: Space Harmonic Coefficient

Search Result 5, Processing Time 0.022 seconds

Modal Analysis on SPL of the Periodic Structure depend on Unsymmetrical Beam Space (비대칭형 보강재 간격에 따른 주기구조물의 SPL모드 해석)

  • 김택현;김종태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.52-60
    • /
    • 2002
  • The purpose of this research is to study the vibration and acoustic pressure radiation from a thin isotropic flat plate stiffened by a rectangular array of beams, and excited by a time harmonic point force. These constructions on aircraft and ship structures are often subjected to fiequency dependent pressure fluctuations and forces. Forces from the these excitations induce structural vibrations in a wide range of fiequencies, which may cause such things as acoustic fatigue and internal cabin noise in the aircraft. It is thus important that the response characteristics and vibration modes of such periodic structures be horn. From this theoretical model, the sound pressure levels(SPL) in a semi-infinite fluid(water) bounded by the plate with the variation in the locations of an external time harmonic point farce on the plate can be calculated efficiently using three numerical tools such as the Gauss-jordan method the LU decomposition method md the IMSL numerical package.

A Study on Sound Radition from the Periodic Structure depend on Symmetrical beam space Using FEM (FEM을 이용한 대칭형 보강재에 보강된 평판의 음향방사에 관한 연구)

  • Kim J.T.;Kim T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.732-739
    • /
    • 2005
  • The determination of sound pressure radiated from periodic plate structures is fundamental in the estimation of noise level in aircraft fuselages or ship hull structures. As a robust approach to this problem, here a very general and comprehensive analytical model is developed for predicting the sound radiated by a vibrating plate stiffened by periodically spaced orthogonal symmetrical beams subjected to a sinusoidally time varying point load. In this these, we experiment with the numerical analysis using the space harmonic series and the SYSNOISE for measuring the vibration mode and character of response caused by sound radiation with adding the harmonic point force in the thin isotropic plate supported by the rectangular lattice reinforcement. We used the reinforcements, beams of open type section like the style of 'ㄷ' letter; the space of the beams were chosen to be 0.2m, 0.3m, 0.4m. We studied the behavior of sound pressure levels, analysis of vibration mode between support points, connection between frequency function and sound pressure levels, and connection between position function and sound pressure levels.

  • PDF

A Study on Sound Radiation from Isofropic Plates Stiffened by Symmetrical Reinforced Beams (대칭형 보에 의해 보강된 등방성 평판의 음향방사에 관한 연구)

  • 김택현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.41-50
    • /
    • 1998
  • The detemination of sound pressure radiated from peoriodic plate structures is fundamental in the estimation of noise levels in aircraft fuselages and ship hull structures. As a robust approach to this problem, here a very general and comprehensive analytical model for predicting the sound radiated by a vibrating plate stiffened by periodically spaced orthogonal symmetric beams subjected to a sinusoidally time varying point load is developed. The plate is assumed to be infinite in extent, and the beams are considered to exert both line force and moment reactions on it. Structural damping is included in both plate and beam materials. A space harmonic series representation of the spatial variables is used in conjunction with the Fourier transform to find the sound pressure in terms of harmonic coefficients. From this theoretical model. the sound pressure levels on axis in a semi-infinite fluid (water) bounded by the plate with the variation in the locations of an external time harmonic point force on the plate can be calculated efficiently using three numerical tools such as the Gauss-Jordan method, the LU decomposition method and the IMSL numerical package.

  • PDF

A New Control Method for a Single-Phase Hybrid Active Power Filter based on a Rotating Reference Frame

  • Kim, Jin-Sun;Kim, Young-Seok
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.718-725
    • /
    • 2009
  • To get instantaneous reference data in a single power system with vector space phasors, the instantaneous load current is adopted as a phase and another new signal, which is delayed through filtering by the phase-delay property of a low-pass filter, is used as the secondary phase. Because the two-phases have a different phase, the instantaneous value of the harmonic current can be obtained without a time-delay in calculation. The reference voltage is created by multiplying the coefficient k by the compensation current using the rotating reference frame synchronized with the source-frequency. To verify the validity of the proposed control method, experiments are carried out on a prototype of the single-phase hybrid active power filter system.

The Study on Integration of Gravities Anomaly in South Korea and Its Vicinities by Using Spherical Cap Harmonic Analysis (구면캡 조화분석을 이용한 남한 및 그 주변지역의 중력이상 통합에 관한 연구)

  • Hwang, Jong-Sun;Kim, Hyung-Rae;Kim, Chang-Hwan;You, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.41 no.2
    • /
    • pp.211-217
    • /
    • 2008
  • The gravity anomalies that observed by ground and shipborne survey and calculated from GRACE satellite are combined by using spherical cap harmonic analysis (SCHA). In this study, ground gravity data from Korea Institute of Geoscience and Mineral Resource(KIGAM) and shipborne gravity data from National Ocean Research Institute(NORI) and Korea Ocean Research and Development institute(KORDI) were used. L-2 level GRACE Gravity Model (GGM02C) was also used for satellite gravity anomaly. The ground and shipborne surveyed data were combined and gridded using Krigging method with 0.05 degree interval and GRACE data were also gridded using the same method with 0.05 degree to harmonize with the resolution of SCHA that has coefficient up to 80. Generalized Minimal Residual(GMRES) inversion method was implemented for calculating the coefficients of SCHA using the gridded ground and satellite gravity anomalies that had 0 km and 50 km altitude, respectively. The results of inversion method showed good correlation of 0.950 and 0.995 with original ground and satellite data. The gravity anomaly using SCHA satisfies Laplace's equation, therefore, using these SCHA coefficients, gravity anomaly can be calculated at any altitude. In this study, gravity anomaly was calculated from 10 km to 60 km altitude and each altitude, very stable results were shown. The ground and shipborne gravity data that have higher resolution and satellite data in long wavelength are harmonized well with SCHA coefficients and successfully applied in South Korea area. If more continuous survey and muti-altitude surveyed data like airborne data available, more precise gravity anomaly can be acquired using SCHA method.