• Title/Summary/Keyword: Soybean leaves

Search Result 266, Processing Time 0.027 seconds

A Study on Food Cure for Wind diseases - focusing on Sikuisimgam, Eumsunjungyo·Singnyojaebyeong, Singnyochanyo - (풍(風)질환과 관련 있는 식치방(食治方)에 관한 연구 - 『식의심감(食醫心鑑)』, 『음선정요(飮膳正要)』, 『식료찬요(食療纂要)』를 중심으로 -)

  • Hong, Jin-im
    • Journal of Korean Medical classics
    • /
    • v.29 no.3
    • /
    • pp.41-56
    • /
    • 2016
  • Objectives : The paper analyzes food cure recipes related to wind diseases as written in Sikuisimgam, Eumsunjungyo Shikyojaebyeong, and Singnyochanyo. The paper shall then use results of the analysis to consider food cure recipes utilized by patients who are suffering from wind diseases or who are showing symptoms of wind diseases. The paper aims to help cure modern diseases related to wind diseases and make a set of suggestion about preventive foods. Methods : Important dietary guidebooks in Korea and China were studied, and the author studied only the ones among the food cure recipes that had wind diseases for which they are effective. Sikuisimgam 16 species, Eumsunjungyo Shikyojaebyeong 13 species, Singnyochanyo 13 species of food cure recipes related to wind diseases were extracted, and they were studied based on their ingredients, cooking style, and administration time. Results : There are food ingredients introduced as effective for curing wind diseases within Sikuisimgam, Eumsunjungyo Shikyojaebyeong, and Singnyochanyo. Among them, some of the ones that can be utilized in the modern age are: arrowroot(葛粉), nepta herb(荊芥), Baekryangmi(白粱米), Dongmaja(冬麻子), milled rice(白米), Eokiin(薏苡人), fermented soybean, chongbaek, Wubanggeun(牛蒡根), soy beans(大豆), grass(椒), xanthium fruit(蒼耳子), changi leaves(蒼耳葉), jinpi(陳皮), black pepper(胡椒), ginger(生薑), mint leaves(薄荷葉), suyu, heukjima(黑脂麻), ojagye, chives, and Baekyuma(白油麻). Conclusions : The food ingredients extracted from Sikuisimgam, Eumsunjungyo Shikyojaebyeong, and Singnyochanyo are effective in curing wind diseases, and they should be processed in ways that enable the people of this age to consume more of them. Moreover, people who have not yet suffered from wind diseases but are showing the symptoms of wind diseases will benefit from taking care of their blood pressure by consuming these foods in their everyday lives. Such people will serve as examples of good food cure recipes.

Modeling Growth of Canopy Heights and Stem Diameters in Soybeans at Different Groundwater Level (지하 수위가 다른 조건에서 콩의 초장과 경태 모델링)

  • Choi, Jin-Young;Kim, Dong-Hyun;Kwon, Soon-Hong;Choi, Won-Sik;Kim, Jong-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.395-404
    • /
    • 2017
  • Cultivating soybeans in rice paddy field reduces labor costs and increases the yield. Soybeans, however, are highly susceptible to excessive soil water in paddy field. Controlled drainage system can adjust groundwater level (GWL) and control soil moisture content, resulting in improvement soil environments for optimum crop growth. The objective of this study was to fit the soybean growth data (canopy height and stem diameter) using Gompertz model and Logistic model at different GWL and validate those models. The soybean, Daewon cultivar, was grown on the lysimeters controlled GWL (20cm and 40cm). The soil textures were silt loam and sandy loam. The canopy height and stem diameter were measured from the 20th days after seeding until harvest. The Gompertz and Logistic models were fitted with the growth data and each growth rate and maximum growth value was estimated. At the canopy height, the $R_2$ and RMSE were 0.99 and 1.58 in Gompertz model and 0.99 and 1.33 in Logistic model, respectively. The large discrepancy was shown in full maturity stage (R8), where plants have shed substantial amount of leaves. Regardless of soil texture, the maximum growth values at 40cm GWL were greater than the value at 20cm GWL. The growth rates were larger at silt loam. At the stem diameter, the $R_2$ and RMSE were 0.96 and 0.27 in Gompertz model and 0.96 and 0.26 in Logistic model, respectively. Unlike the canopy height, the stem diameter in R8 stage didn't decrease significantly. At both GWLs, the maximum growth values and the growth rates at silt loam were all larger than the values at sandy loam. In conclusion, Gompertz model and Logistic model both well fit the canopy heights and stem diameters of soybeans. These growth models can provide invaluable information for the development of precision water management system.

Identification of disease resistance to soft rot in transgenic potato plants that overexpress the soybean calmodulin-4 gene (GmCaM-4) (대두 칼모듈린 단백질, GmCaM-4를 발현하는 형질전환 감자의 무름병 저항성 확인)

  • Park, Hyeong Cheol;Chun, Hyun Jin;Kim, Min Chul;Lee, Sin Woo;Chung, Woo Sik
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.157-163
    • /
    • 2020
  • Calmodulin (CaM) mediates cellular Ca2+ signals in the defense responses of plants. We previously reported that GmCaM-4 and 5 are involved in salicylic acid-independent activation of disease resistance responses in soybean (Glycine max). Here, we generated a GmCaM-4 cDNA construct under the control of the cauliflower mosaic virus (CaMV) 35S promoter and transformed this construct into potato (Solanum tuberosum L.). The constitutive over-expression of GmCaM-4 in potato induced high-level expression of pathogenesis-related (PR) genes, such as PR-2, PR-3, PR-5, phenylalanine ammonia-lyase (PAL), and proteinase inhibitorII (pinII). In addition, the transgenic potato plants exhibited enhanced resistance against a bacterial pathogen, Erwinia carotovora ssp. Carotovora (ECC), that causes soft rot disease and showed spontaneous lesion phenotypes on their leaves. These results strongly suggest that a CaM protein in soybean, GmCaM-4, plays an important role in the response of potato plants to pathogen defense signaling.

Effects of Phosphate Application Rate on Growth Characters, Forage Yield and Feed Value of Jeju Native Soybean (제주 재래대두의 인산시비량 차이가 생육형질, 수량 및 사료가치에 미치는 영향)

  • 조남기;강영길;송창길;윤상태;조영일;김동현
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.23 no.3
    • /
    • pp.143-150
    • /
    • 2003
  • This study was conducted to determine the response of main growth characters, yield and chemical composition of Jeju native soybean based on the difference between phosphate rates (0, 50, 100, 150, 200, 250kg/ha) from May 11 to September 10 in 2002 in Jeju island. Days to flowering was delayed from 92 days to 97 days as the increasing of phosphate rate. Also plant height grew longer from 109cm to 124cm. The number of branches and leaves, stem diameter, root length and weight of root grew powerful as phosphate rate increased from 0 to 250kg/ha. Fresh forage yield was 26.5MT/ha in the nonphosphate plot and then was 36.9MT/ha as phosphate rate increased to 250kg/ha. And the difference between 200kg/ha and 250kg/ha in phosphate rate was not significant. Dry matter, crude protein and TDN yield increased 6.0∼7.9MT/ha, 0.9∼1.4MT/ha and 3.4∼4.9MT/ha respectively, as the increasing of phosphate rate. Also crude protein, crude fat, NFE and TDN content increased 15.5∼18.3%, 2.2∼3.3%, 42.5∼43.5%, and 56.7∼61.9% respectively. In contrast with this, crude fiber and crude ash decreased 32.1∼28.1% and 7.7∼6.8% respectively. To reach the climax of forage yield was estimated optimum phosphate rate to be 200kg/ha.

Effects of Planting Density on Growth Characters, Forage Yield and Feed Value of Jeju Native Soybean (제주 재래대두의 재식밀도에 따른 생육형질, 수량 및 사료가치에 미치는 영향)

  • 조남기;강영길;송창길;윤상태;조영일;김동현
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.23 no.3
    • /
    • pp.135-142
    • /
    • 2003
  • Jeju native soybean was grown at five plant densities(30${\times}$30cm, 30${\times}$25cm, 30${\times}$20cm, 30${\times}$15cm, 30${\times}$10cm) from May 11 to September 10 in 2002 in Jeju island to determine the optimum plant density. Days to flowering was delayed from 94 days to 98 days as increasing of plant density. Plant height was 103cm at 30${\times}$30cm plot, as plant density increased, was 117cm at 30${\times}$10cm plot. As plant density increased, the number of branches and leaves, stem diameter, weight of plant, root length and weight of root grew low. As plant density increased from 30${\times}$30cm to 30${\times}$15cm, fresh forage, dry matter, crude protein and TDN yield increased 23.3∼36.5MT/ha, 5.1∼8.0MT/ha, 0.8∼1.4MT/ha and 2.9∼4.8MT/ha respectively, but decreased at 30${\times}$10cm plot. As plant density increased, crude protein, crude fat, NFE and TDN content increased 16.2∼17.9%, 2.7∼3.7%, 37.6∼40.7% and 56.1∼60.0% respectively. In contrast with this, crude fiber and crude ash decreased 34.9 ∼30.8% and 8.6∼7.2% respectively. To reach the climax of forage yield was estimated optimum plant density to be 30${\times}$15cm.

Correlation between Leaf Size and Seed Weight of Soybean (콩의 잎 크기와 종실 무게와의 상관)

  • Park, Gyu-Hwan;Baek, In Youl;Han, Won Young;Kang, Sung Taek;Choung, Myoung Gun;Ko, Jong Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.4
    • /
    • pp.383-387
    • /
    • 2013
  • This study was carried out to examine whether the leaf size is likely to be used as a selection criterion for large seed genotype in soybean (Glycine. max (L.) Merr.) breeding program. Two hundred twenty nine soybean germplasms which had collected in Korea, United States, China and Japan were used in this experiment. The area of unifoliate leaf, middle leaflet of first trifoliate and third trifoliate leaf ranged from $3.2cm^2$ to $33.8cm^2$, 9.2 to $29.5cm^2$, and 7.2 to $58.9cm^2$, respectively. One hundred seed weight also showed great variation from 2.7 to 39.0 gram. The average leaf area of unifoliate, middle leaflet of first trifoliate and third trifoliate leaf were $15.7cm^2$, $18.1cm^2$ and $32.7cm^2$, respectively, and that of seed average weight was 17.2 gram per one hundred seed. Significantly positive correlations were observed between seed weight and leaf area of unifoliate (r=$0.80^{**}$), first trifoliate (r=$0.75^{**}$) and third trifoliate (r=$0.67^{**}$), respectively. Both the leaf length and leaf width of unifoliate, middle leaflet of first trifoliate and third trifoliate leaf were significantly positively correlated with seed weight and both the correlations of unifoliate were higher than the other leaves. The correlations of leaf width in soybean leaflet were higher than those of leaf length. Leaf length/width (L/W) ratio of upper leaf was higher than that of lower leaf in the leaf size. Both the leaf area and leaf width of unifoliate leaf are the most suitable predictive characteristics of early selection in related to seed weight for soybean breeding program.

Variation of Leaf Characters in Cultivating and Wild Soybean [Glycine max (L.) Merr.] Germplasm (콩 재배종과 야생종 유전자원의 엽 형질 변이)

  • Jong, Seung-Keun;Kim, Hong-Sig
    • Korean Journal of Breeding Science
    • /
    • v.41 no.1
    • /
    • pp.16-24
    • /
    • 2009
  • Although leaf characters are important in soybean [Glycin max (L.) Merr.] breeding and development of cultural methods, very little information has been reported. The objectives of this study were to evaluate and analyze the relationships among leaf characters and suggest possible classification criteria for cultivating and wild (Glycin soja Sieb. & Zucc.) soybeans. Total of 94 cultivating and 91 wild soybean accessions from the Soybean Germplasm Laboratory of Chungbuk National University were used for this study. Central leaflet of the second leaf from the top of the plant was selected to measure leaf characters. Average leaf length, leaf width, leaf area, leaf shape index (LSI) of cultivating and wild soybeans were 12.3$\pm$1.25 cm and 6.6$\pm$1.35 cm, 6.8$\pm$1.241 cm and 2.9$\pm$0.92 cm, 55.6$\pm$15.75 $cm^2$ and 14.3$\pm$7.83 $cm^2$, and 1.9$\pm$0.38 and 2.4$\pm$0.53, respectively. Based on LSI, three categories of leaf shape, i.e., oval, ovate and lanceolate, were defined as LIS$\leq$2.0, LSI 2.1~3.0 and 3.1$\leq$LSI, respectively. Percentage of oval, ovate and lanceolate leaf types among cultivating and wild soybean accessions were 78.7%, 17.0% and 4.3 %, and 40%, 15.4% and 4.4%, respectively. Based on leaf length, three categories for cultivating, i.e. short leaf ($\leq$11.0 cm), intermediate (11.1~13.0 cm), and long (13.1 cm$\leq$), and four categories, i.e. short ($\leq$5.0 cm), intermediate (5.1~7.0 cm), long (7.0~9.0 cm), and very long (9.1 cm$\leq$) for wild soybeans were defined. Short, intermediate and long leaf types were about 1/3, 1/2 and 1/6, respectively, in cultivating soybeans, and 15.4%, 40.7% and 39.5%, plus 4.4% of very long leaf type in wild soybean. Cultivating and wild soybeans had leaf thickness, leaf area ratio (LAR), angle and petiol length of 0.25$\pm$0.054 mm and 0.14$\pm$0.032 mm, 40.1$\pm$8.22 and 53.7$\pm$12.02, $37.6{\pm}5.89^{\circ}$ and $54.6{\pm}10.77^{\circ}$, and 23.9$\pm$5.89 cm and 5.9$\pm$2.33 cm, respectively. There were highly significant positive correlations between leaf length and leaf width, and negative correlation between LSI and leaf width both in cultivating and wild soybeans. Although leaf area showed significant correlations with leaf length, leaf width and LIS in cultivating soybeans, wild soybeans showed no significant relationships among these characters. In general, soybeans with oval, ovate and lanceolate leaves were significantly different in leaf width and thickness. Cultivating soybean with oval leaf had greater leaf area, while wild soybeans with oval or ovate leaf had longer petiol than with lanceolate leaf.

Effect of Acid Rain on Vegetation (산성(酸性)비가 식생(植生)에 미치는 영향(影響))

  • Lee, Jong-Sik;Kim, Bok-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.346-358
    • /
    • 1994
  • In this paper, the current knowledge on the formation of acid rain and its effect on vegetation are reviewed. The pollutants which were emitted into the air are oxidized by photochemical reaction and affect the vegetation by dry and wet deposition. Acid rain at pH 4.0 affected sensitive plants and when it was below pH 3.0, visible symptoms developed in most of the crops. The acid rain treatment at pH 2.0 decreased dry weight, leaf area and chlorophyll contents in soybean but it increased rate of photosynthesis and respiration rate. Rain treatment at pH 2.8 increased ethylene production, but it’s not a suitable indicator of sensitivity to acid rain. At pH 2.0 treatment, the contents of soluble Mn and Al were increased but the cultivated soil pH at upper layer(0-5cm) was significantly decreased. The pertubation of glandular trichome which is existed along the vein was developed at all treatment except the control(pH 6.0) and non-treatment. Histological pertubation of spiked trichome and disintegration of chloroplast were developed only on the leaves of sesame treated with SAR(simulated acid rain) of pH 2.0.

  • PDF

Studies on the Nutritional Physiology of Soybeans. -3. Relation between growth and phosphorus nutrition with the fertilizational period (대두(大豆)의 영양생리(榮養生理)에 관(關)한 연구(硏究) (제(第)3보(報)) - 시비(施肥) 시기(時期)에 따른 인(燐)의 영향(影響) -)

  • Kang, Y.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.45-48
    • /
    • 1969
  • In an effort to determine the effect of the physiological function of phosphorus in higher plants, soybean have been used as samples in an attempt to compare them with rice on which there have been a number of reports of research. The absorptive and metabolic process phosphorus in each separate manuring period has been studied. It has iefluenced enhancement of vitality in the plants whether manuring is conducted earlier or later. These phenomena have greatly concerned with the absorption and transference of phosphorus in the process of growth are done more slowly than those of nitrogen and phosphorus from stems and leaves to pods.

  • PDF

Influence of Growth Conditions for the Production of Bacteriocin, Glycinecin, Produced by Xanthmonas campestris pv. glycines 8ra (콩 불마름병균의 생장 조건이 박테리오신인 glycinecin의 생성에 미치는 영향)

  • Woo Jung;Sunggi Heu;Cho, Yong-Sup
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.376-381
    • /
    • 1998
  • Xanthomonas campestris pv. glycines 8ra causes bacterial pustule disease on susceptible soybean leaves and produces a bacteriocin, named glycinecin, against related bacteria such as Xanthomonas campestris pv. vesicatoria. The antimicrobial activity of the glycinecin was effective to most tested Xanthomonas species. X. c. pv. glycines 8ra was able to produce the glycinecin in liquid media as well as solid media. Maximal productivity of glycinecin was obtained at 3$0^{\circ}C$ in the early stationary phase of growth of the X. c. pv. glycines 8ra. The production of glycinecin was not dependent on the initial inoculum level but on cell density. Glycinecin was very sensitive to proteolytic enzymes such as trypsin and proteinase K but resistant to DNase and RNase. The culture supernatant of X. c. pv. glycines 8ra retained some of its antimicrobial activity after 15 min at 6$0^{\circ}C$. It is stable at wide range of pH. The glycinecin showed the bactericidal activity after the adsorption of the glycinecin to the sensitive bacterial cell.

  • PDF