Variation of Leaf Characters in Cultivating and Wild Soybean [Glycine max (L.) Merr.] Germplasm

콩 재배종과 야생종 유전자원의 엽 형질 변이

  • Jong, Seung-Keun (College of Agriculture, Life and Environment Sciences, Chungbuk National University) ;
  • Kim, Hong-Sig (College of Agriculture, Life and Environment Sciences, Chungbuk National University)
  • 정승근 (충북대학교 농업생명환경대학) ;
  • 김홍식 (충북대학교 농업생명환경대학)
  • Received : 2009.01.19
  • Published : 20090300

Abstract

Although leaf characters are important in soybean [Glycin max (L.) Merr.] breeding and development of cultural methods, very little information has been reported. The objectives of this study were to evaluate and analyze the relationships among leaf characters and suggest possible classification criteria for cultivating and wild (Glycin soja Sieb. & Zucc.) soybeans. Total of 94 cultivating and 91 wild soybean accessions from the Soybean Germplasm Laboratory of Chungbuk National University were used for this study. Central leaflet of the second leaf from the top of the plant was selected to measure leaf characters. Average leaf length, leaf width, leaf area, leaf shape index (LSI) of cultivating and wild soybeans were 12.3$\pm$1.25 cm and 6.6$\pm$1.35 cm, 6.8$\pm$1.241 cm and 2.9$\pm$0.92 cm, 55.6$\pm$15.75 $cm^2$ and 14.3$\pm$7.83 $cm^2$, and 1.9$\pm$0.38 and 2.4$\pm$0.53, respectively. Based on LSI, three categories of leaf shape, i.e., oval, ovate and lanceolate, were defined as LIS$\leq$2.0, LSI 2.1~3.0 and 3.1$\leq$LSI, respectively. Percentage of oval, ovate and lanceolate leaf types among cultivating and wild soybean accessions were 78.7%, 17.0% and 4.3 %, and 40%, 15.4% and 4.4%, respectively. Based on leaf length, three categories for cultivating, i.e. short leaf ($\leq$11.0 cm), intermediate (11.1~13.0 cm), and long (13.1 cm$\leq$), and four categories, i.e. short ($\leq$5.0 cm), intermediate (5.1~7.0 cm), long (7.0~9.0 cm), and very long (9.1 cm$\leq$) for wild soybeans were defined. Short, intermediate and long leaf types were about 1/3, 1/2 and 1/6, respectively, in cultivating soybeans, and 15.4%, 40.7% and 39.5%, plus 4.4% of very long leaf type in wild soybean. Cultivating and wild soybeans had leaf thickness, leaf area ratio (LAR), angle and petiol length of 0.25$\pm$0.054 mm and 0.14$\pm$0.032 mm, 40.1$\pm$8.22 and 53.7$\pm$12.02, $37.6{\pm}5.89^{\circ}$ and $54.6{\pm}10.77^{\circ}$, and 23.9$\pm$5.89 cm and 5.9$\pm$2.33 cm, respectively. There were highly significant positive correlations between leaf length and leaf width, and negative correlation between LSI and leaf width both in cultivating and wild soybeans. Although leaf area showed significant correlations with leaf length, leaf width and LIS in cultivating soybeans, wild soybeans showed no significant relationships among these characters. In general, soybeans with oval, ovate and lanceolate leaves were significantly different in leaf width and thickness. Cultivating soybean with oval leaf had greater leaf area, while wild soybeans with oval or ovate leaf had longer petiol than with lanceolate leaf.

콩 재래종과 야생종 자원의 엽 형질간의 관계를 분석하여 콩의 엽형 조사를 계량화할 수 있는 기준을 제시함으로써 콩의 초형개량과 재배법 개선을 위하여 필요한 기초자료를 제공하고자 충북대학교 농업생명환경대학 두류유전자원관리실에서 분양받은 콩 재배종 94개와 야생종 91개의 엽형질을 조사한 결과는 다음과 같다. 1. 재배종과 야생종의 엽장은 각각 12.3$\pm$1.25 cm(8.7~15.3 cm)과 평균 6.6$\pm$1.35 cm(3.7~11.3 cm), 엽폭은 각각 6.8$\pm$1.241 cm(3.3~9.58 cm), 엽면적은 각각 55.6$\pm$15.75 $cm^2$ (23.6~106.8 $cm^2$)와 14.3$\pm$7.83 $cm^2$ (4.1~48.9$cm^2$), LSI는 각각 1.9$\pm$0.38(1.3~3.3)와 2.4$\pm$0.53(1.4~4.2)이었다. 2. 재배종과 야생종 모두 LSI $\leq$2.0은 원형엽, 2.1~3.0은 난형엽, 그리고 3.1$\leq$ 이상은 피침형엽으로 구분할 수 있었다. LSI에 따라서 원형엽, 난형엽 및 피침형엽을 가진 비율이 재배종은 각각 78.7%, 17.0% 및 4.3%, 그리고 야생종은 30.8%, 58.2% 및 9.9%였다. 3. 엽장에 따라서는 2 cm 간격으로 단엽, 중간엽 및 장엽을 분류하되 재배종은 각각 $\leq$11.0 cm, 11.1~13.0 cm, 그리고 13.1 cm$\leq$ 로 구분하고, 야생종은 $\leq$5.0 cm, 5.1~7.0 및 7.0~9.0로 구분하고 9.1 cm$\leq$ 이상인 엽은 초장엽으로 구분할 수 있었다. 이렇게 분류하였을 때 재배종은 단엽이 약 1/3, 중엽이 약1/2 그리고 장엽이 약 1/6이었으며, 야생종은 중엽과 장엽이 약 40%로 비슷하였고, 단엽이 15.4%, 그리고 초장엽이 4.4%였다. 4. 재배종과 야생종의 잎 두께는 각각 0.25$\pm$0.054 mm (0.13~0.45 mm)과 0.14$\pm$0.032 mm(0.06~0.26 mm)였고, LAR은 각각 40.1$\pm$8.22(27.1~70.50)와 53.7$\pm$12.02(33.8~81.5)였으며, 엽각은 각각 $37.6{\pm}5.89^{\circ}$(24.1~56.0$^{\circ}$)와 54.6$\pm$$10.77^{\circ}$(30.8~76.0$^{\circ}$)였고, 엽병장은 각각 23.9$\pm$5.89 cm (11.2~36.9 cm)와 5.9$\pm$2.33 cm(2.2~17.7 cm)였다. 5. 재배종과 야생종 모두 엽장은 엽폭과 고도로 유의한 상관이 있고, 엽폭은 LSI와 고도로 유의한 부의상관이 있었으며, 재배종은 엽면적이 엽장이나 엽폭과 정의 상관이 있고 LSI와는 부의 상관이 있었지만, 야생종은 LSI와 엽장, 엽폭 및 엽면적은 유의한 관계가 없었다. 6. 재배종과 야생종 모두 엽형군 간에 엽폭이나 엽 두께의 차이가 있어 LSI가 낮은 엽형이 엽폭이 길고 엽두께가 두꺼웠으며, 재배종은 엽형군에 따라서 엽면적의 차이가 있었고, 야생종은 엽형군에 따라서 엽병장의 차이가 있었다. 엽두께는 재배종과 야생종 모두 원형엽군과 난형엽군 사이 및 난형엽군과 피침형엽군 사이에 차이가 없었다. 재배종은 엽형군 간에 엽병장의 유의한 차이가 없었으나 야생종은 원형엽군이 난형엽군이나 피침형엽군에 비하여 엽병이 길었다.

Keywords

Acknowledgement

Supported by : 충북대학교

References

  1. Chen Y, Nelson RL. 2004. Evaluation and classification of leaflet shape and size in wild soybean. Crop Sci. 44:671-677 https://doi.org/10.2135/cropsci2004.0671
  2. Cho DS. 1995. Rice Physiology and Ecology. Hyangmoonsa
  3. Domingo WE. 1945. Inheritance of number of seeds per pod and leaflet shape in the soybean. J. Agric. Res. 70:251-268
  4. Dong YS, Sun H, Zhung B, Zhao L, He M. 1999. The genetic diversity in annual wild soybean. p. 147-155. In Proceed. World Soybean Research Conference VI, Chidago, IL
  5. Dornoff DC, Shibles RM. 1970. Varietal differences in net photosynthesis of soybean leaves. Crop Sci. 10:42-45 https://doi.org/10.2135/cropsci1970.0011183X001000010016x
  6. Furuta N, Ninomiya S, Takahashi N, Ohmori H, Ukai Y. 1995. Quantitative evaluation of soybean (Glycine max L. Merr.) leaflet shape by pricipal component scores based on elliptic Fourier descriptor. Breeding Science 45:315-320
  7. IBPGR. 1984. Descriptors for soybean. 20 p
  8. Kilen TC. 1983. Inheritance of a short petiole trait in soybean. Crop Sci. 23:1208-1210 https://doi.org/10.2135/cropsci1983.0011183X002300060043x
  9. Korea Seed & Variety Service. 2000. Descriptor for Crop Variety Examination. pp. 11
  10. Lersten NR, Carlson JB. 1987. Vegetative morphology. In J.R. Wilcox (Ed.) 'Soybeans: Improvement, Production and Uses. 2nd ed. Agronomy Monograph' no. 16:49-94. ASA-CSSA-SSSA, Madison, WI
  11. Lugg DG, Sinclair TR. 1980. Seasonal changes in morphology and anatomy of field-grown soybean leaves. Crop Sci. 20:191-196 https://doi.org/10.2135/cropsci1980.0011183X002000020011x
  12. Lugg DG, Sinclair TR. 1981. Seasonal changes in photosynthesis of field-grown soybean leaflets. I. Relation to leaflet dimensions. Photosynthetica 15:129-137
  13. Rural Development Administration. 1985. Descriptor for Plant Genetic Resources. 38-42
  14. Sawada S. 1988. Inheritance of leaflet shape in soybean. Soybean Genet. Newsl. 15:61-65
  15. Sawada S. 1992. Time to determination and variations within and between plants in leaf shape of soybean. Jpn J. Crop Sci. 61:96-100 https://doi.org/10.1626/jcs.61.96
  16. Takahashi N. 1934. Linkage relation between the genes for the forms of leaves and the number of seeds per pod of soybean. Jpn. J. Genet. 9:208-225 https://doi.org/10.1266/jjg.9.208
  17. You MD, Liu YB, Zhou TJ, Gai JY. 1995. Effects of leaf shape on seed yield and its components in soybeans. Soybean Genet. Newsl. 22:66-70