• Title/Summary/Keyword: Southern blot 분석

Search Result 158, Processing Time 0.024 seconds

Transformation of Rice (Oryza sativa L.) with Sucrose Transporter cDNA from Potato (Solanum tuberosum L.) (감자 Sucrose Transporter 유전자의 벼 Genome 내로의 도입)

  • 백소현;유남희;윤성중
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.2
    • /
    • pp.97-101
    • /
    • 2001
  • The transport and allocation of photosynthetic assimilate is an important regulatory factor in plant productivity, In order to modify assimilate partitioning in rice, transgenic plants containing a potato sucrose transporter (SuT) gene were developed. Calli derived from rice seeds (Oryza sativa L. cv Dongjin) were cocultured with A. tumefaciens LBA 4404 harboring the SuT gene. Calli were transferred to MS medium supplemented with 50 mg/L hygromycin, 500 mg/L carbenicillin, 2 mg/L kinetin, 0.1 mg/L NAA. After 2 weeks, hygromycin resistant shoots were obtained from the calli on the selection medium. Roots were induced from the putative transgenic shoots on rooting MS medium supplemented with 250 mg/L cabenicillin. Plant regeneration rate from the calli was about 150%. Stable incorporation of the potato SuT gene into rice genomic DNA was confirmed by PCR and Southern blot analysis.

  • PDF

Molecular Cloning, Sequence Analysis, and in Vitro Expression of Flavanone 3β-Hydroxylase from Gypsophila paniculata (안개초(Gyposphila paniculata)로부터 Flavanone 3β-Hydroxylase 유전자의 분리 및 분석)

  • Min, Byung-Whan
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.85-91
    • /
    • 2006
  • Flavanone 3$\beta$-hydroxylase (FHT) is an enzyme acting in the central part of the flavonoid biosynthesis pathway. FHT catalyses the hydroxylation of flavanone to dihydroflavonols in the anthocyanin pathway. In this paper we describe the cloning and expression of the genes encoding the flavonoid-biosynthetic enzyme FHT in Gypsophila paniculata L. A heterologous cDHA probe from Dianthus cavophyllus was used to isolate FHT-encoding cDHA clones from Gypsophila paniculata L.. Inspection of the 1471 bp long sequence revealed an open reading frame 1047 bp, including a 190 bp 5' leader region and 288 bp 3' untranslated region. Comparison of the coding region of this FHT cDHA sequence including the sequences of Arabidopsis thaliana, Citrus sinensis, Dianthus caryophyllus, Ipomoea batatas, Matthiola incana, Nierembergia sp, Petunia hybrida, Solanum tuberosum, Vitis vinifera reveals a identity higher than 69% at the nucleotide level. The function of this nucleotide sequences were verified by comparison with amino acid sequences of the amino-terminus and tryptic peptides from purified plant enzyme, by northern blotting with mRHA from wild type and mutant plants, by in vitro expression yielding and enzymatically active hydroxylase, as indicated by the small dihydrokaempferol peak. Genomic southern blot analysis showed the presence of only one gene for FHT in Gypsophila paniculata.

Genetic Transformation of Lettuce (Lactuca sativa L.) with Agrobacterium tumefaciens (Agrobacterium tumefaciens에 의한 상추 (Lactuca sativa L.)의 형질전환)

  • 최언옥;양문식;김미선;은종선;김경식
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.1
    • /
    • pp.55-58
    • /
    • 1994
  • Agrobacterium tumefaciens LABA4404 harboring plant binary vector, pBI121, was used for genetic transformation of lettuce (Lactuca sativa t.). Cotyledon segments were infected with A. tumefaciens LBA4404 by cocultivation method and regenerated. Regenerated letture was subject to molecular analyses for integration into plant nuclear genome and expression of ${\beta}$-glucumnidase (GUS) gene. Southern and Northern blot analyses demonstrated that GUS gene was integrated into plant nuclear genome and expressed into its mRNA. The expression of GUS gene into its protein was confirmed by specetrophotometric assay of GUS activity.

  • PDF

Acquisition of Thermotolerance in the Transgenic Plants with BcHSP17.6 cDNA (BcHSP17.6 cDNA의 도입에 의한 형질전환된 식물의 내열성 획득)

  • Ki Yong Kim;Min Sup Chung;Jin Ki Jo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.4
    • /
    • pp.379-386
    • /
    • 1997
  • Recombinant plasmid, pBKH4, containing NPT II and P35S-BcHSP17.6 was constructed by ligation of Bum H I -digested pBKSl-l and BcHSP 17.6 (thermotolerance gene) 6om pBLH4. The tobacco leaf disc was cocultivated with transformed Agmbacterium tumefaciens bearing pBKH4 for 24 hours and transformed shoots were selected on MS-n/B medium containing $100\;{\mu\textrm{g}}/ml$ of kanamycin. Heat-killing temperature of Nicotima tabacum was $50^{\circ}$ for >15min, and transformed tobacco plants with BcHSP17.6 cDNA exhibited thermotolerance at the heat-killing temperature. The transgenic plants were analyzed by Southern blot hybridization with the probe of ${\alpha}^{_32}P$ labelled BcHSP17.6 cDNA. Transcription and expression level of BcHSP17.6 cDNA were also continued by Northern blot analysis and Ouchterlony double immunodiffusion assay. In this study, we suggest that the BcHSP17.6 cDNA introduced to tobacco plant is related to thenuoto-lerance and 17.6-kD LMW HSP acts as a protector from heat damage in plants.

  • PDF

Production of Transgenic Birdsfoot Trefoil (Lotus corniculatus L.) Plants by Introduction of E35S Promoter + AtNDPK2 Gene (E35S 프로모터 + AtNDPK2 유전자 도입에 의한 버즈풋 트레포일 (Lotus corniculatus L.) 형질전환체 생산)

  • Kim Ki-Yong;Jang Yo-Soon;Choi Gi-Jun;Sung Byung-Ryeol;Kim Won-Ho;Seo Sung;Lee Byung-Hyun;Kwak Sang-Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.2
    • /
    • pp.83-90
    • /
    • 2006
  • To develop transgenic birdsfoot trefoil (Lotus corniculatus L.) plants tolerant to environmental stress, Arabidopsis NDPK gene (AtNDPK) was introduced into birdsfoot trefoil plants using Agrobacterium-mediated transformation and expressed powerfully under the control of the E35S promoter. The expression vector, pEN-K was used for introduction of AtNDPK gene into birdsfoot trefoil plaits. The transformed calli were selected on kanamycin containing medium and then regenerated. The transformed birdsfoot trefoil plants were cultivated for 4 months on BOi2Y medium. Genomic DNA PCR and Southern blot analysis confirmed the incorporation of AtNDPK into the birdsfoot trefoil genome.

Rapid detection of Theileria sergenti by polymerase chain reaction (중합효소연쇄반응을 이용한 Theileria sergenti의 신속한 검출)

  • 최은진;강승원
    • Parasites, Hosts and Diseases
    • /
    • v.35 no.2
    • /
    • pp.111-118
    • /
    • 1997
  • Four separate pairs of oligonucleotide primers within the coding region in a T sergenti 33-kDa surface protein gene were selected to detect T. sergenti by PCR. The specificity of PCR-amplified DNA was examined by digestion with restriction enzyme 3nd Southern blot hybridization using T. sergenti p33 DNA probe. PCR appears to be specific for T. sergenti, without detectable signals from uninfected erythrocytes, uninfected bovine leukocytes and other hemoparasites, including A. morginnle and 3. ouata. Although 46 of 71 specimens (64.8%) from grazing cattle were microscopically positive. PCR in this study showed that 64 specimens (88.7%) were positive. Therefore, PCR proves a useful diagnostic tool for detecting T sergenti-infected cattle. In addition, it is also revealed that PCR was significantly more sensitive than traditional microscopic examination using Giemsa's stain.

  • PDF

Expression of Phosphinothricin Acetyltransferase Gene in Transgenic Rice Plants (형질전환체 벼에서 phosphinothricin acetyltransferase 유전자 발현)

  • Lee, Soo-In;Lee, Sung-Ho
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.368-373
    • /
    • 2004
  • We have obtained fertile transgenic rice plants resistant to the broad spectrum herbicide Bast $a^{(R)}$ (active ingredient phosphinothricin, PPT) by PEG-mediated transformation procedure. The plasmid pCaMV35S::Bar was used to deliver the bar gene into embryogenic suspension culture-derived protoplasts of rice (Oryza sativa L.). Transformed plants were regenerated and selected on medium containing 15 mg/l of phosphinothricin. Stable integration and expression of the bar gene in transgenic rice plants was confirmed by Southern and Northern blot analysis. Transgenic $R_1$ plants were also confirmed by assays for phosphinothricin acetyltransferase (PAT) activity. The bar gene was expressed in the primary transgenic rice plants and in the next generation progeny, in which it showed a 3 : 1 Mendelian inheritance pattern. Transgenic $R_1$ and $R_2$ plants were resistant to the herbicide Bast $a^{(R)}$ when sprayed at rates used in field practice.ice.

The use of cotyledonary-node explants in Agrobacterium tumefaciensmediated transformation of cucumber (Cucumis sativus L.) (Agrobacterium에 의한 오이 형질전환에서 자엽절 절편의 이용)

  • Jang, Hyun-A;Kim, Hyun-A;Kwon, Suk-Yoon;Choi, Dong-Woog;Choi, Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.198-202
    • /
    • 2011
  • Agrobacterium tumefaciens-mediated cotyledonary-node explants transformation was used to produce transgenic cucumber. Cotyledonary-node explants of cucumber (Cucumis sativus L. cv., Eunsung) were co-cultivated with Agrobacterium strains (EHA101) containing the binary vector (pPZP211) carrying with CaMV 35S promoter-nptII gene as selectable marker gene and 35S promoter-DQ gene (unpublished data) as target gene. The average of transformation efficiency (4.01%) was obtained from three times experiments and the maximum efficiency was shown at 5.97%. A total of 9 putative transgenic plants resistant to paromomycin were produced from the cultures of cotyledonary-node explants on selection medium. Among them, 6 transgenic plants showed that the nptII gene integrated into each genome of cucumber by Southern blot analysis.

Transformation of 'Ilmibyeo' using pCAMBIA 1300 and Microstructural Investigation of Leaves (pCAMBIA 1300 벡터를 이용한 일미벼의 형질전환 및 잎의 전자현미경적 관찰)

  • Guo, Jia;Seong, Eun-Soo;Kim, Young-Hwa;Jo, Hye-Jeong;Cho, Joon-Hyeong;Wang, Myeong-Hyeon
    • Korean Journal of Plant Resources
    • /
    • v.20 no.5
    • /
    • pp.437-441
    • /
    • 2007
  • The argE gene of E.coli was introduced into #Ilmibyeo# cultivar of rice by Agrobacterium tumefaciens and a large number of transgenic plants were produced. Embryogenic calli were co-cultivated with A. tumefaciens strain AGL1 carrying the plasmid pCAMBIA1300 containing hygromycin resistance(HygR). Transgenic plants showing in vitro resistance to 50mg/L hygromycin were obtained using a selection procedure. Stable integration of argE and HPT genes into chromosomal DNA was proven by southern blot analysis and PCR analysis of genomic isolated from $T_0$ progenies. The fragments of 650 bp(HPT) were detected in transgenic rice lines. The 230 bp(argE) fragments were showed in agarose gel, and detected fragments were matched with size of argE specific primer. The microscopic feature of leaf on scanning electron microscope(SEM) revealed differences between clear and chalky in shape and arrangement of stoma but did not discriminate.

Iron fortification of grains by introducing a recombinant gene of ferritin with seed promoters in rice (종자 특이 프로모터와 대두 Ferritin 유전자에 의한 벼 종실의 철분강화)

  • Cho, Yong-Gu;Kim, Hyung-Keun;Choi, Jang-Sun;Jung, Yu-Jin;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.87-95
    • /
    • 2009
  • The recombinant DNAs, pGBF, pGTF, and pZ4F, using soybean ferritin gene have constructed with the promoters derived from seed proteins, glutelin, globulin, and zein. The recombinant ferritin genes were transformed into rice plant by Agrobacterium-mediated transformation. Iron contents and agronomic traits have been evaluated in the transgenic progenies. The embryogenic calli survived from second selection medium were regenerated at the rates of 19.2% with pGBF, 15.0% with pGTF, and 18.4% with pZ4F in Donganbyeo and 6.7% with pGBF, 11.7% with pGTF, and 3.4% with pZ4F in Hwashinbyeo. The introduction of ferritin gene in putative transgenic rice plants was confirmed by PCR and Southern blot analysis and also the expression of ferritin gene was identified by Northern blot and Western blot analysis. The iron accumulation in transgenic rice grains of the transgenic rice plant, T1-2, with zein promoter and ferritin gene contained 171.4 ppm showing 6.4 times higher than 26.7 ppm of Hwashinbyeo seed as wild type rice, but the transgenic plants with globulin and glutelin showed a bit higher iron contents with a range from 2.1 to 3.0 times compare to wild type grain. The growth responses of transgenic plants showed the large variances in plant height and number of tillers. However, there were some transgenic plants having similar phenotype to wild type plants. In the T1 generation of transgenic plants, plant height, culm length, panicle length, and number of tillers were similar to those of wild type plants, but ripened grain ratio ranged from 53.3% to 82.2% with relatively high variation. The transgenic rice plants would be useful for developing rice varieties with high iron content in rice grains.