DOI QR코드

DOI QR Code

The use of cotyledonary-node explants in Agrobacterium tumefaciensmediated transformation of cucumber (Cucumis sativus L.)

Agrobacterium에 의한 오이 형질전환에서 자엽절 절편의 이용

  • Jang, Hyun-A (Department of Oriental Pharmaceutical Development, Nambu University) ;
  • Kim, Hyun-A (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kwon, Suk-Yoon (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Choi, Dong-Woog (Department of Biological Education, Jeonnam National University) ;
  • Choi, Pil-Son (Department of Oriental Pharmaceutical Development, Nambu University)
  • 장현아 (남부대학교 약용식물형질전환연구소) ;
  • 김현아 (한국생명공학연구원) ;
  • 권석윤 (한국생명공학연구원) ;
  • 최동욱 (전남대학교 생물교육과) ;
  • 최필선 (남부대학교 약용식물형질전환연구소)
  • Received : 2011.06.29
  • Accepted : 2011.07.30
  • Published : 2011.09.30

Abstract

Agrobacterium tumefaciens-mediated cotyledonary-node explants transformation was used to produce transgenic cucumber. Cotyledonary-node explants of cucumber (Cucumis sativus L. cv., Eunsung) were co-cultivated with Agrobacterium strains (EHA101) containing the binary vector (pPZP211) carrying with CaMV 35S promoter-nptII gene as selectable marker gene and 35S promoter-DQ gene (unpublished data) as target gene. The average of transformation efficiency (4.01%) was obtained from three times experiments and the maximum efficiency was shown at 5.97%. A total of 9 putative transgenic plants resistant to paromomycin were produced from the cultures of cotyledonary-node explants on selection medium. Among them, 6 transgenic plants showed that the nptII gene integrated into each genome of cucumber by Southern blot analysis.

Agrobacterium과 자엽절 절편 공동배양으로 오이 형질전환체를 생산하였다. 오이 자엽절 절편 (c.v. Eunsung)은 선발 마커로서 nptII유전자와 유용유전자로서 DQ유전자가 포함된 pPZP211를 EHA101에 형질전환하여 공동 배양하였다. 3회 반복실험으로부터 평균 형질전환 빈도는 4.01%를, 최대 빈도는 5.97%를 보여 주었다. Paromomycin항생제 저항성을 갖는 9개의 식물체를 선발과정을 통해 얻었으며, Southern blot 분석에 의해 6개 식물체의 genome에 nptII유전자자 안정적으로 도입되어 있음을 확인할 수 있었다.

Keywords

References

  1. Boyhan GJ, Norton D, Jacobsen BJ, Abrahams BR (1992) Evaluation of watermelon and related germplasm for resistance to zucchini yellow mosaic virus. Plant Dis 76:251-252 https://doi.org/10.1094/PD-76-0251
  2. Chee PP (1990) Transformation of Cucumis sativus tissue by Agrobacterium tumefaciens and the regeneration of transformed plants. Plant Cell Rep 9:245-248
  3. Cho MA, Choi DW, Liu JR, Clemente T, Choi PS (2004) Development of transgenic soybean using Agrobacterium tumefaciens. Kor J Plant Biotechnol 31:255-259 https://doi.org/10.5010/JPB.2004.31.4.255
  4. Cho MA, Song YM, Park YO, Ko SM, Min SR, Liu JR, Choi PS (2005a) The use of glufosinate as a selective marker for the transformation of cucumber (Cucumis sativus L.). Kor J Plant Biotechnol 32:161-165 https://doi.org/10.5010/JPB.2005.32.3.161
  5. Cho MA, Song YM, Park YO, Ko SM, Min SR, Liu JR, Lee JH, Choi PS (2005b) Production of transgenic melon from the cultures of cotyledonary-node explant using Agrobacteriummediated transformation. Kor J Plant Biotechnol 32:257-262 https://doi.org/10.5010/JPB.2005.32.4.257
  6. Clemente T, LaValle BJ, Howe AR, Ward DC, Rozman RJ, Hunte PE, Broyles DL, Kasten DS, Hinchee MA (2000) Progeny analysis of glyphosate selected transgenic soybean derived from Agrobacterium-mediated transformation. Crop Sci 40: 797-803 https://doi.org/10.2135/cropsci2000.403797x
  7. Dellaporta SL, Wood J, Hicks JB (1985) Maize DNA miniprep. In: Malmberg R, Messing J, Sussex (eds), Molecular Biology of Plants: A laboratory Course Manual, Cold Spring Harbor, New York, pp 36-37
  8. Dong JZ, Yang MZ, Jia SR, Chua NH (1991) Transformation of melon (Cucumis melo L.) and expression from the cauliflower mosaic virus 35s promoter in transgenic melon. Bio/Tech 9: 858-863 https://doi.org/10.1038/nbt0991-858
  9. Finer KR, Finer JJ (2000) Use of Agrobacterium expressing green fluorescent protein to evaluate colonization of sonicationassited Agrobacterium-mediated transformation-treated soybean cotyledons. Lett Appl Microbiol 30:406-410 https://doi.org/10.1046/j.1472-765x.2000.00737.x
  10. Gaba V, Zelcer A, Gal-On A (2004) Cucurbit biotechnology-the importance of virus resistance. In Vitro Cell Dev Biol Plant 40: 346-358 https://doi.org/10.1079/IVP2004554
  11. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: $\beta$-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901-3907
  12. Kim HA, Min SR, Choi DW, Choi PS, Hong SG (2010) Development of transgenic cucumber expressing TPSP gene and morphological alterations. J Plant Biotechnol 37:1-5 https://doi.org/10.5010/JPB.2010.37.1.001
  13. Kim HA, Lee BY, Jeon JJ, Choi DW, Choi PS, Utomo SD, Lee JH, Kang DH, Lee YJ (2008) GUS gene expression and plant regeneration via somatic embryogenesis in cucumber (Cucumis sativus L.). Kor J Plant Biotechnol 35:275-280 https://doi.org/10.5010/JPB.2008.35.4.275
  14. Miao MM, Xu R, Zheng LJ (2009) High-efficiency Agrobacterium tumefaciens-mediated transformation of cucumber (Cucumis sativus L.) using stem nodes as explants. The J Horticult Sci Biotechnol 84:199-203 https://doi.org/10.1080/14620316.2009.11512504
  15. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  16. Nishibayashi S, Kayakawa T, Nakajima T, Suzuki M, Kaneko H (1996) CMV protection in transgenic cucumber plants with an introduced CMV-O cp gene. Theor Appl Genet 93:672-678 https://doi.org/10.1007/BF00224061
  17. Reed J, Privalle L, Powell ML, Meghji M, Dawson J, Dunder E, Suttie J, Wenck A, Launis K, Kramer C, Chang YF, Hansen G, Wright M, Chang YF (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In vitro Cell Dev Biol Plant 37:127-132
  18. Simmonds DH, Donaldson PA (2000) Genotype screening for proliferative embryogenesis and biolistic transformation of shortseason soybean genotypes. Plant Cell Rep 19:485-490 https://doi.org/10.1007/s002990050760
  19. Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892-899 https://doi.org/10.1104/pp.102.017681
  20. Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503-512 https://doi.org/10.1016/S0022-2836(75)80083-0
  21. Trulson AJ, Simpson RB, Shahin EA (1986) Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenesis. Theor Appl Genet 73:11-15

Cited by

  1. Development of transgenic cucumbers expressing Arabidopsis Nit gene vol.40, pp.4, 2013, https://doi.org/10.5010/JPB.2013.40.4.198
  2. Production of transgenic cucumber expressing phytoene synthase-2A carotene desaturase gene vol.43, pp.3, 2016, https://doi.org/10.5010/JPB.2016.43.3.341
  3. Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.) vol.14, pp.3, 2015, https://doi.org/10.1016/S2095-3119(14)60899-6
  4. Efficient shoot regeneration using cotyledon explants and Agrobacterium tumefaciens - mediated transformation of bottle gourd (Lagenaria sicraria Standl.) vol.41, pp.3, 2014, https://doi.org/10.5010/JPB.2014.41.3.140