• Title/Summary/Keyword: Sound-absorbing material

Search Result 101, Processing Time 0.025 seconds

Developing of Sound Absorption Composite Boards Using Carbonized Medium Density Fiberboard (탄화 중밀도섬유판을 이용한 목재흡음판 개발)

  • Lee, Min;Park, Sang-Bum;Byeon, Hee-Seop;Kim, Jong-In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.714-722
    • /
    • 2014
  • In the previous study, a variety of wood-based panels was thermally decomposed to manufacture carbonized boards that had been proved to be high abilities of insect and fungi repellence, corrosion and fire resistant, electronic shielding, and formaldehyde adsorption as well as sound absorption performance. Based on the previous study, carbonized medium density fiberboard (c-MDF) was chosen to improve sound absorption performance by holing and sanding process. Three different types of holes (cross shape, square shape, and line) with three different sanding thickness (1, 2, and 3 mm) were applied on c-MDF and then determined sound absorption coefficient (SAC). The control c-MDF without holes had 14% of SAC, however, those c-MDFs with holes had 16.01% (square shape), 15.68% (cross shape), and 14.25% (line) of SAC. Therefore, making holes on the c-MDF did not significantly affect on the SAC. As the degree of sanding increased, the SAC of c-MDF increased approximately 65% on sanding treated c-MDFs (21.5, 21.83, and 19.37%, respectively) compared to the control c-MDF (13%). Based on these results, composite sound absorbing panel was developed with c-MDF and MDF (11 mm). The noise reduction coefficient of composite sound absorbing panel was 0.45 which was high enough to certify as sound absorbing material.

Acoustical Properties and Absorption Performance of Steel-Wire Fabrics

  • Seo, Seong-Won;Kim, Dong-Woo;Lee, Dong-Hoon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.2
    • /
    • pp.87-96
    • /
    • 2004
  • Acoustic performances of the steel-wire fabrics manufactured from the crushed tires were experimentally investigated for various thicknesses and bulk densities. The well- known two-cavity method was used to measure the characteristic impedances, the propagation constants, and the absorption coefficients. The normal absorption coefficients measured by the two-cavity method agreed well with those measured by the two-microphone impedance tube method. The experimental results showed that the magnitude and frequency range of the absorption coefficient were controllable by changing the thickness and the bulk density of the steel-wire fabrics. Therefore, the steel-wire fabrics from the crushed tires can be successfully used as a good sound absorbing material.

An evaluation on the sound insulation performance by the install method of asymmetric structure (비대칭 구조의 설치방법에 따른 차음성능평가)

  • Choi, Dool;Moon, Soon-Sung;Goo, Hee-Mo;Kim, Hang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.10-12
    • /
    • 2014
  • In ISO 10140-5:2010, defines the reverberation time conditions of the receiving room. The sound absorption side of test specimen is installed in the source room generally. In this study, examined at the change in the sound insulation characteristics for the test specimen of asymmetric structure attached sound absorbing material by changing the installed position. A difference of sound insulation performance was maxium Rw 1 dB, it is preferable to place the larger sound absorption area in source room.

  • PDF

Calculating transmission loss of cylindrical silencers lined with multi-layered poroelastic sound absorbing materials using mode matching method (모드 매칭법을 이용한 다층 다공성 탄성 흠음재가 채워진 원통형 소음기의 음향투과손실 계산)

  • Lee, Jongmoo;Yang, Haesang;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.375-388
    • /
    • 2022
  • This paper deals with the process of obtaining sound transmission loss of a cylindrical silencer lined with multi-layered poroelastic sound absorbing materials. The Biot model and the Johnson-Champoux-Allard-Lafarge (JCAL) model were used to deal with waves propagating in multi-layered poroelastic materials. The boundary conditions required for analysis of the silencer were obtained and the numerical process of finding modes was explained. A numerical experiment was conducted on the 2-layered silencer using the modes and the transmission loss converged with the first 12 modes. Finally, the mode matching method proposed in this research was validated by being compared with the results calculated from Finite Element Method (FEM) about different kinds of sound absorbing materials.

A Study on the Identification of Noise Source and the Noise Reduction Method of a Turbo Chiller (터보냉동기의 소음원 파악 및 저소음화에 대한 연구)

  • Jeon, Wan-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.7-13
    • /
    • 2004
  • In this paper, we identify the noise source and the path of a chiller. This chiller is newly developed for R-l34a refrigerant and 250 RT cooling capacity. The measured overall SPL of the developed turbo-chiller is about 100 dBA. Due to the high rotating speed of the centrifugal impeller, the nun noise source of the chiller is the blade passing frequency and its higher harmonics of the centrifugal impeller. This generated soundpropagates through the duct, and then transmits and radiates to the outer field. From the experiment, it is found that the high frequency noise is mostlytransmitted and radiated through the elbow duct, but the low frequency noise is transmitted and vadiated through the condenser wall. Therefore applying the absorbing material is an effective way of reducing the high and low frequency noise simultaneously. Measurement results show that the application of the sound absorbing material to the elbow duct reduced the overall sound pressure level by 4 dB compared to the 9 dBA reduction for the case of full enclosure. In order to control the generated noise, a dissipativetype silencer is also designed and tested. The silencer reduced the radiated noise about 7.5 dBA.

A Study Interior Noise Reduction of a Maglev Train at Low Speed (저속 주행시 자기부상열차의 실내소음저감에 관한 연구)

  • 김현실;김재승;강현주;김봉기;김상렬
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.7
    • /
    • pp.253-260
    • /
    • 2001
  • A Study of interior noise reduction in the magelv train is presented. Tarin speed of interest is low such that aero-dynamic noise is negligible and power supply system is a dominant noise source. Based on the measurements of interior noise and acceleration levels during running and zero speed conditions, dominant noise sources are identified. After spectra characteristics of noise sources are investigated several noise reducing methods are studied such as STL increasement of floor panels. sealing. and absorption treatment It is found that the most important noise sources are VVVF inverter and SLM in running condition, whereas air conditioner and DC/DC converter are dominant in zero speed. Sine the major noise sources are under the floor complete sealing and high STL of the floor panel are shown to be the most crucial factors in noise reduction After sound absorbing material, which is polyurethan foam of 50 mm thickness, is thickness, is attached to the downward side of the floor in addition to sealing treatment, the interior noise is reduced by 3~4 dB.

  • PDF

A Study of Safety Design of Sound Absorbing Structure and Development of Materials To Reduce living Noise (생활소음 저감을 위한 흡음소재 개발과 흡음구조의 안전설계에 관한 연구)

  • 허성관;최종탁
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.1
    • /
    • pp.34-41
    • /
    • 2002
  • There m many noise sources in living environment. Especially, noise that happen in apartment or tenement house may make neighborhood serious troubles. Thus, the development of new materials to reduce and improve the living noises is required. During past decade, various methodologies have been developed and researched to reduce and improve the living noises. However, there are many problems to apply these methodologies to practical our environment. In this thesis, we develop the new artificial material supporting high porous materials and lower pressure density to improve the problem caused in the safety design and sound absorbing material. To prove the efficiency of the developed methodology, we compare our methodology with conventional methodologies and also suggest an alternative methodology to contribute quiet life environments.

  • PDF

A Study on the Characteristic of Driving Sound Noise for Various Optical Disk Drives (광디스크 드라이브의 종류별 구동소음 특성에 관한 연구)

  • Oh, Se-Won;Kim, Yu-Sung;Kim, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.580-586
    • /
    • 2005
  • In this study, experimental tests for driving noise of various optical disk drives (ODD) have been performed using 1/2' microphone noise measurement system. Several new and old ODD models by different manufacturers are practically considered and compared far realistic driving conditions. Sound insulation case with absorbing material fur the present experimental tests is designed and constructed using CATIA system. It is found that average data transfer rate, operating RPM, and sound noise level seems to be different for the same opposed speed ODD by different manufacturers. Moreover, driving sound noise level can be largely affected by both tray shape and driving speed even for the same apparent data transfer rate.

  • PDF

A Study on the Characteristic of Driving Sound Noise for Various Optical Disk Drives (광디스크 드라이브의 종류별 구동소음 특성에 관한 연구)

  • Oh, Se-Won;Kim, Yu-Sung;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1169-1176
    • /
    • 2005
  • In this study, experimental tests for driving noise of various optical disk drives (ODD) have been performed using 1/2' microphone noise measurement system. Several new and old ODD models by different manufacturers are practically considered and compared for realistic driving conditions. Sound insulation case with absorbing material for the present experimental tests is designed and constructed using CATIA system. It is found that average data transfer rate, operating RPM, and sound noise level seem to be different for the ODD models with same denoted speed by different manufacturers. Moreover, driving sound noise level can be largely affected by both tray shape and driving speed even for the condition of the same apparent data transfer rate.