• 제목/요약/키워드: Sound-Absorbing material

검색결과 101건 처리시간 0.03초

흡음형 방음벽의 성능향상에 관한 연구 (A Study on Performance Improvement of Sound Absorbing Noise Barrier)

  • 김현실;김재승;강현주;김봉기;김상렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.849-854
    • /
    • 2001
  • A study on performance of the sound absorbing noise barrier is presented. Noise barrier of sound absorbing type is composed of the front panel, sound absorbing material, and back panel. For allowing sound path, front panel is usually perforated. The performance of the noise barrier is governed by the opening ratio of the perforated panel, sound absorption coefficient of the sound absorbing material. In this study, the effects of the opening ratio, diameter of the hole, thickness of the sound absorbing material are investigated. It is found that the thickness of the sound absorbing material must be at least 50 mm to ensure the required minimum NRC value 0.70, and the opening ratio is greater than 0.2. It is shown that the thickness of the back panel is crucial in providing required STL (Sound Transmission Loss) value. The performance of the developed noise barrier is measured, where its sound absorbing coefficient and sound transmission loss satisfy the criteria.

  • PDF

Use of Pine (Pinus densiflora) Pollen Cones as an Environmentally Friendly Sound-Absorbing Material

  • JANG, Eun-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권3호
    • /
    • pp.186-192
    • /
    • 2022
  • This study examined the utility of pine (Pinus densiflora) pollen cones as an environmentally friendly material with sound-absorbing properties. Pine pollen cone samples with widths of 0.8-1.2 cm and lengths of 3.5-4.5 cm were prepared. After filling impedance tubes to heights of 6, 8, 10, or 12 cm with the pine pollen cones, the sound absorption coefficient of the pine pollen cones was investigated. The peak sound absorption frequency of the samples with a thickness of 6 cm was reached at 1,512 Hz; however, this value shifted to 740 Hz in samples with a thickness of 12 cm. Therefore, the sound-absorbing performance of pine pollen cones at low frequencies improved as the material thickness increased. According to KS F 3503 (Korean Standards Association), the sound absorption grade of pine pollen cones ranges from 0.3 to 0.5 M, depending on the material thickness of the pine pollen cones. In conclusion, the pine pollen cones demonstrated good sound absorption properties. They, thus, may be considered an environmentally friendly sound-absorbing material.

황토를 이용한 친환경 유공 흡음보드의 흡음특성 (Absorption Characteristics of Perforated Environment Friendly Sound Absorbing Board using Hwangto)

  • 김선우;박현구
    • KIEAE Journal
    • /
    • 제11권1호
    • /
    • pp.3-8
    • /
    • 2011
  • Sound absorbing materials used for lightweight panels and interior material are mainly made of fibroid material such as glass wool or rock wool. However these fiber type sound absorbing materials have some problems such that sound absorption could be decreased as time goes by because of durability. In addition, dust scattering from fiber type material can cause another problem in health. In this point of view, this study aims to develop environment friendly sound absorbing material using Hwangto(so called loess or yellow soil), a traditional housing material. Hwangto is natural housing material in Korea and generally known for improving indoor air quality. Hwangto panel is made to construct on the floor, wall and ceiling, and expected that there is not enough absorption. Present study tried to develop environment friendly sound absorbing material that has high sound absorption performance with good environment performance in terms of air quality. Pore rate was designed to maximize the absorption in the specific frequency bands, and two kinds of backing space were applied in order to see the effect of backing space. As a result peak frequency that has maximum absorption is going high as the pore rate is increased. The backing space provides more absorption and makes the peak frequency down to low.

전달행렬법에 의한 다공질 흡음재의 음향특성 연구 (A Study on the Acoustic Properties of Porous Material by Using Acoustic Transfer Matrix)

  • 박철희;주재만;염창훈
    • 소음진동
    • /
    • 제6권5호
    • /
    • pp.635-644
    • /
    • 1996
  • In this paper, Allard's modelling method which employs the method of acoustic transfer matrix(ATM) is applied to yield more precise results in the analysis of porous sound absorbing material. The method of ATM, based on Biot's theory, is known to play an important role in the estimation of the sound absorption when a sound projects onto the material. In the case of a single layered porous sound absorbing material, the surface impedance and the absorption coefficient by using the method of ATM are estimated. With the variation of the material properties, sound absorption characteristics and analyzed. Transmission Loss in a combination of the porous sound absorbing material with a thin plate is predicted.

  • PDF

용융고화슬래그를 이용한 흡음재료 활용가능성 검토 (Investigation on the Utilization Possibility of Vitrified Slag for Sound Absorbing Material)

  • 김성중;이동호;박현서
    • 유기물자원화
    • /
    • 제8권3호
    • /
    • pp.97-103
    • /
    • 2000
  • 본 연구는 용융고화 슬래그에 대한 중금속 용출실험 및 두께별 흡음율 특성에 따른 흡음재료로서의 활용가능성을 제시하기 위하여 수행되었다. 용융고화 슬래그를 대상으로 한 중금속 용출실험 결과, 중금속이 슬래그내로 안정화되어 용출되지 않았다. 용융고화 슬래그의 저주파 영역에서의 흡음특성은 공통적으로 600 Hz~l kHz 부근에서 최대 흡음을 나타냈고, 고주파 영역에서는 3 kHz 부근에서 최대 흡음을 나타냈다. 고주파 영역에서는 7 kHz 주파수 영역을 넘는 범위에서는 흡음율이 다시 증대하는 특징을 나타냈다. 용융고화 슬래그를 방음벽의 재료로 사용할 경우 저주파 및 고주파 영역내의 흡음율이 80% 이상의 흡음효과를 얻을 수 있는 것으로 나타났는데, 이는 흡음율 시험에 사용되는 시편의 두께에 의한 흡음특성을 고려한다면 다소 차이가 있을 수 있으나, 흡음재료로의 재활용에 가능한 물성값을 보유한 것으로 본 연구결과 흡음자재로 활용가능성이 높은 것으로 나타났다.

  • PDF

Peanut Shells as an Environmentally Beneficial Sound-Absorbing Material

  • JANG, Eun-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권3호
    • /
    • pp.179-185
    • /
    • 2022
  • This study investigated the prospect of using peanut shells as an alternative and green sound-absorbing material. The sound-absorption coefficients were determined after filling impedance tubes of 30, 60, and 90 mm in height with peanut shells. The sound-absorption ability increased as the filling height increased, showing noise reduction coefficient (NRCs) of 0.23, 0.43, and 0.54 for the 30-, 60-, and 90-mm heights, respectively. In addition, for sounds greater than 2,000 Hz, the average sound-absorption coefficient of peanut shells in the 60- and 90-mm heights was 0.9. In summary, peanut shells were found to have good sound-absorption properties comparable to or better than those of bamboo, sisal, jute, and wool, and this research suggests that peanut shells may be useful as an environmentally friendly sound-absorbing material.

점토 소결재의 흡음특성에 관한 실험적 연구 (An Experimental Study on the Sound Absorption Property of a Sintered Clay Material)

  • 양윤상;이동훈;서은성
    • 한국소음진동공학회논문집
    • /
    • 제23권4호
    • /
    • pp.365-371
    • /
    • 2013
  • The purpose of this study is to develop a sound absorbing material for indoor which manufactured by a clay and binding material. The seven kind of sound absorbing specimens which sintered through a mold process at high temperature were manufactured for the purpose of testing sound absorption performance. The random and normal sound absorption coefficients were measured for the sintered clay sound absorbing specimens with different particle size, density and mixture ratio. From the experimental results, it was found that its particle size was closely related to the sound absorption performance. It was shown that the sintered clay sound absorbing specimen had the sound absorption properties of a fiber-type or a resonance-type sound absorbing material depending on the particle size.

Debye Polarization을 이용한 흡음재 모델링에 대한 연구 (An Approach for Modeling of Sound Absorbing Material using Debye Polarization)

  • 박규칠;;윤종락
    • 한국정보통신학회논문지
    • /
    • 제16권7호
    • /
    • pp.1391-1396
    • /
    • 2012
  • 본 연구에서는 해저의 반사면이나 흡음재와 같이 주파수에 따라 다른 특성을 가지는 매체를 수치적으로 모델링하였다. 기존의 흡음재 해석 등가회로 모델에 용량성 성분을 부가하기 위해 Debye polarization 기법을 적용하여 흡음재의 모델링을 하였다. 이 모델의 파라미터를 추정하기 위해 폴리우레탄이라는 흡음재의 흡음 주파수 특성을 이용하였다. 파라미터의 추정에는 non-linear least squares라는 비선형 최적화 기법을 사용하였다. 먼저 두께 25 mm의 폴리우레탄의 흡음재의 파라미터를 추정하였으며, 이 파라미터를 이용해 50 mm의 폴리우레탄의 특성을 모델링하는 것이 가능하였다. 이를 바탕으로 흡음재의 주파수에 따른 흡음 특성을 하나의 간단한 모델로 모델링하는 것이 가능함을 보였다.

흡음형 방음벽의 내부 구성에 따른 흡음특성 (Sound Absorbing Characteristics According to Interior Configuration of Noise Barrier)

  • 박진규;김상헌;김관주;박희준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.387-392
    • /
    • 2003
  • This study is put a focus on the identification of sound characteristics according to the interior configuration of sound absorption material and air gap. Noise barrier is general consists of front perforated panel, air layer, sound absorption material, air gap and back plate. Noise barrier is required to the NRC value of 0.7. The absorbing performance of the noise barrier relies on the opening ratio of the perforated panel and the efficiency of the absorbing material. This study has observed the effect of opening ratio and hole size, the increase of sound absorbing performance by the configurations of sound absorption material and air gap. New designed noise barrier is achieved the acoustical performance of 0.87 the measurement in a reveration room.

  • PDF

Experimental Investigation of the Sound Absorption Capability of Wood Pellets as an Eco-Friendly Material

  • JANG, Eun-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권2호
    • /
    • pp.126-133
    • /
    • 2022
  • In this study, I used wood pellets as an eco-friendly sound-absorbing material. The aim of the research was to analyze the effect of the filling height of wood pellets on sound absorption. This was done using two types of wood pellets of different lengths (A group: 1.5-3 cm, B group: less than 1.5 cm). With increasing filling height of the wood pellets, the optimum sound absorption shifted towards a lower frequency. The group B wood pellets had better sound absorption capacity than the group A ones. The optimum sound absorption coefficient of group A filled to a height of 7 cm was 0.722 at 864 Hz. On the other hand, that of group B filled to a height of 7 cm was 0.764 at 862 Hz, 5.82% higher than that of group A. While wood pellets are used as an eco-friendly fuel, the results of this study suggest the possibility of using wood pellets as an eco-friendly sound-absorbing material.