• Title/Summary/Keyword: Sound radiation

Search Result 295, Processing Time 0.031 seconds

Vibration and Sound Characteristic of the Chun-cheon Citizen's Bell (춘천시민의 종의 진동 및 음향 특성)

  • Kim, Seok-Hyun;Kim, Tae-Hyung;Kim, Yun-Ho;Han, Young-Ho
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.81-88
    • /
    • 2006
  • The Chun-cheon Citizen's Bell was cast in memory of hosting the 2010 world leasure conference and a striking ceremony was held at the city hall on December 31, 2005. In this study, vibration and sound of the bell are measured and the property of the magnificent sound of the bell is scientifically investigated. Frequency components making the sound are identified and how the frequency components decrease with time is observed using waterfall plot(3-dimensional frequency spectrum). Beat characteristics of the hum(1st frequency) and the fundamental(2nd frequency)are examined by experiment. Directivity of the sound radiation of the bell is examined by measuring the vibration and sound in several directions. Duration of the vibration and the sound is estimated using damping ratio.

  • PDF

Acoustic Power Control of a Lightly-Damped Enclosed Sound Field

  • Kim, Woo-Young;Kim, Dong-Kyu;Hwang, Won-Gul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.19-27
    • /
    • 2001
  • This research attempts to find an active control strategy which reduces acoustic power and acoustic energy in lightly-damped enclosed sound field such as a vehicle compartment or an operating room of heavy industrial machinery. An active control strategy, which takes into consideration of the acoustic radiation power of the source as a cost function, is formulated and examined to find capability of reducing noise. An adaptive filtering algorithm for sound power control is suggested and implemented to control lightly-damped sound field. To verify the method, sound power based active noise control algorithm was implemented on a rectangular box with lightly-damped wall, and popular acoustic energy based control with modal coupling reduction was performed to compare the noise reduction performance. It was shown that a total sound power based strategy provides a practical mean for global noise reduction for lightly damped sound field.

  • PDF

A Study on Characteristics of Noise Propagation for Railway (철도차량 소음방사 특성에 관한 연구)

  • 구동회;김재철;박태원
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.1
    • /
    • pp.26-31
    • /
    • 2002
  • The more sophisticated patterns of propagation model is presented in this paper, which includes three different source characteristics (spherical, cosine and dipole). The spherical, cosine and dipole radiation characteristics compared, and sound event level and the maximum sound level are calculated by experiment and calculation. It is shown that patterns of propagation have dipole characteristics for low speed range (below about 150Km/h) at electric multiple system. We know that push-pull high speed system has cosine characteristics of noise propagation at low speed range (below about 200Km/h).

Numerical Evaluation of The Rayleigh Integral Using the FFT Method for Transient Sound Radiation (FFT 방법을 이용한 음압복사에 대한 Rayleigh Integral 의 수치해석적 연구)

  • Jeon, Jae-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.22-30
    • /
    • 1988
  • In this paper, the sound radiation from a clamped circular plate in an infinite baffle is calculated by using the FFT technique. The radiated sound fields are obtained by two-dimensional fast Fourier transform method is the spatial domain instead of a direct numerical evaluation of Rayleigh integral for economy of the computation time. The computation time is consumed at least by 1/200 times of the direct numerical evaluation on the Rayleigh integral in acoustic fields. The FFT method can be applicable to any shaped geometry as well as circular plate. The FFT solution could be very powerful in predicting the near and far fields of complex structures.

  • PDF

A study on characteristics of noise propagation for railway (철도차량의 소음방사 특성에 관한 연구)

  • Kim, Jae-Chul;Koo, Dong-Hoe;Moon, Kyeong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.204-209
    • /
    • 2001
  • The more sophisticated patterns of propagation model is presented in this paper, which includes three different source characteristics (spherical, cosine and dipole). The spherical, cosine and dipole radiation characteristics compared, and sound event level and the maximum sound level are calculated by experiment and calculation. It is shown that patterns of propagation have dipole characteristics for low speed range (below about 150Km/h) at electric multiple system. We know that push-pull high speed system has cosine characteristics of noise propagation at low speed range (below about 200Km/h).

  • PDF

The Forecd Vibration Analysis using Transfer Matrix(I) : Immersed Infinite Circular Cylindrical Shell (전달 행렬을 이용한 진동 및 방사소음 해석 (I) : 무한 원통형 몰수체)

  • 정우진;신구균;전재진;이헌곤
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.443-449
    • /
    • 1994
  • In the analysis of circular cylindrical shell's vibration and sound radiation, there are numerical and analytical methods. Numerical methods such as F.E.M and B.E.M, have the limit of frequency range. Analytical method can be applied to the circular cylindrical shell from low frequency to high frequency. In this paper, we use the analytical method for shell, and numerical method, F.D.M, for fluid. We also use the method using transfer matrix and eigenanalysis of transfer matrix which can therefore calculate the rotational d.o.f that is very imkportant in synthesis with inner structure. Inner structure has much effect on the submerged circular cylindrical shell vibration and sound rediation. Results for the immersed circular cylindrical shell vibration and sound radiation are compared with the analytic solutions.

  • PDF

Hygrothermal sound radiation analysis of layered composite plate using HFEM-IBEM micromechanical model and experimental validation

  • Binita Dash;Trupti R Mahapatra;Punyapriya Mishra;Debadutta Mishra
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.265-281
    • /
    • 2024
  • The sound radiation responses of multi-layer composite plates subjected to harmonic mechanical excitation in hygrothermal environment is numerically investigated. A homogenized micromechanical finite element (FE) based on the higher-order mid-plane kinematics replicating quadratic function as well as the through the thickness stretching effect together with the indirect boundary element (IBE) scheme has been first time employed. The isoparametric Lagrangian element (ten degrees of freedom per node) is used for discretization to attain the hygro-thermo-elastic natural frequencies and the modes of the plate via Hamilton's principle. The effective material properties under combined hygrothermal loading are considered via a micromechanical model. An IBE method is then implemented to attain structure-surrounding coupling and the Helmholtz wave equation is solved to compute the sound radiation responses. The effectiveness of the model is tested by converging it with the similar analytical/numerical results as well as the experimentally acquired data. The present scheme is further hold out for solving diverse numerical illustrations. The results revealed the relevance of the current higher-order FE-IBE micromechanical model in realistic estimation of hygro-thermo-acoustic responses. The geometrical parameters, volume fraction of fiber, layup, and support conditions alongside the hygrothermal load is found to have significant influence on the vibroacoustic characteristics.

A Study on Acoustic Radiation Reduction of a Vibrating Panel by Using Particle Swarm Optimization Algorithm (군집행동 알고리즘을 이용한 판넬구조물의 방사소음저감에 관한 연구)

  • Jeon, Jin-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.482-490
    • /
    • 2009
  • In this paper, the author proposes a new method for acoustic radiation optimum design to minimize noise from a vibrating panel-like structure using a collaborative population-based search method called the particle swarm optimization algorithm(PSOA). The PSOA is a parallel evolutionary computation technique initially developed by Kennedy and Eberhart. The acoustic radiation optimization method based on the PSOA consists of two processes. In the first process, the acoustic radiation analysis by an integrated p-version FEM/BEM, which was developed by using MATLAB, is performed to evaluate the exterior acoustic radiation field of the panel. The second process is to search the optimum design variables: 1) Shape of Bezier curves and 2) Shape and position of ribs, to minimize noise from the panel using the PSOA. The optimization method based on the PSOA is compared to that based on the steady state genetic algorithm(SSGA) in order to verify the effectiveness and validity of the optimal solution by PSOA. Finally, it is shown that the optimal designs of the panel obtained by using the PSOA can achieve effective reductions in radiated sound power.

A study on patterns of propagation for high speed train(KTX) (한국형 고속전철(KTX) 방사패턴에 관한 연구)

  • 구동회;김재철;박태원;문경호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.836-842
    • /
    • 2001
  • The more sophisticated patterns of propagation model is presented in this paper, which includes three different source characteristics. The spherical, cosine and dipole radiation characteristics compared and sound event level and the maximum sound level are calculated by experiment and calculation. It is shown that patterns of propagation has dipole characteristics for low speed range(below about 150km/h) at electric multiple system. We know that push-pull high speed system(maximum speed: 300km/h) has cosine characteristics of noise propagation. For this purpose, We conduct the experiment of noise and know the empirical formula of noise level and radiation coefficient K. This model of simulation is conducted through point source array model at wheel/rail contact point by using program and experimental formula. We can guess prediction of profile, flat and wear of wheel by above modeling in near field.

  • PDF

A Numerical Study of Radiation Effect from Ducted Fans with Liners (라이너가 있는 덕트의 소음방사 특성에 관한 수치적 연구)

  • 임창우;정철웅;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1010-1015
    • /
    • 2002
  • Over the last few decades, noise has played a major role in the development of aircraft engines. The dominant noise is generated by the wake interactions of fan and downstream stator. Engine inlet and exhaust ducts are being fitted with liner materials that aid in damping fan related noise. In this paper, the radiation of duct internal noise from duct open ends with liners is studies via numerical methods. The linearized Euler's equations in generalized curvilinear coordinates are solved by the DRP scheme. The far field sound pressure levels are computed by the Kirchhoff integration method. Through comparison of sound directivity from bell-mouth duct with and without liners, it is shown that radiation from engine inlet is affected by liner effects or a soft wall boundary condition.

  • PDF