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Numerical Evaluation of the Rayleigh Integral
Using the FFT Method for Transient
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ABSTRACT

In this paper, the sound radiation from a clamped circuiar plate in an infinite baffle is calculated by
using the FFT technique. The radiated sound fields are obtained by two-dimensional fast Fourier trans-
form method in the spatial domain instead of a direct numerical evaluation of Rayleigh integral for
economy of the computation time. The computation time is consumed at least by 1/200 times of the
direct numerical evaluaticn on the Rayleigh integral in acoustic fields. The FFT method can be appli-
cable to any shaped geomeiry as well as circular plate. The FFT solution could be very powerful in
predicting the near and far fields of complex structures,
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L INTRODUCTION rating sources. The forward propagation of

acoustic field is to obtain the pressure field from

Rayleigh’s integrals are a special case of the the velocity distributions and the backward

Helmholtz integral which stands the foundation propagation is to obtain the velocity distribu-
of the theory of the sound radiation from vib- tions from the pressure field.

For the case of planar vibrators, the 2-
¢ Chinhae Machine Depot, P. 0. Box 18,
Chinhae Kyeongnam, 645 - 600, Korea.
Ast e FAMSAT Ay s, seiiA cularly attracts as the rapid means of evaluating

dimensional Fourier transform method parti-
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the transforms, i.e., the use of FFT method,

Copley!, Schenck?, and Chertock® develop-
ed solutions for the radiation from rotating
bodies such as finite cylinders and spheroids.
Recently, Kristiansen® dealt with the solution
for the nearfield vector intensity from a vib-
rating membrane. Stepanishen et al.® had ap-
peared on the numerical calculation of the near-
field of planar sources using FFT method. And
E.G. William et al®7 studied the numerical
evaluation of Rayleigh integral for planar radia-
tors using FFT technique,

In this paper, we represent an extremely
fast numerical solution of Rayleigh’s integral
for a baffled clamped circular plate with the
velocity responses obtaining from Ref. 10 and
11. The acoustic field for an arbitrary plane is
calculated by wusing the two dimensional fast
Fourier transform. It is shown to decrease the
computation time at least about 1/200 than the
direct numerical integration for the 64x64
lattices used in this paper. In order to calculate
the sound field with the FFT method, the
meshes are divided to 64x64 and the complex
acoustic pressure field is obtained. We compare
the direct numerical results of Rayleigh integral
with those of FFT technique. The results using
the FFT method is considerably acceptable to
calculate the acoustic field, It takes about 250
sec on a Cyber 170-835,

I, COMPUTATIONAL TECHNIQUE WITH
FFT METHOD

The well-known Rayleigh integral on the
radiated sound pressure from the vibrating sur-
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Fig. 1. Sound radiation model from the plate.

faces shown in Fig.] is given as

plir, 8, l)’*‘z—;r' c;:-;‘% SA(r'. 8, t- R/c)/R ds
(1}
where
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and A(r’,@.t-R/¢) is the acceleration having a
time delay, ¢ is the sound speed in ambient
medium, § is the acoustic admittance, o, c/z
(w), zZ{w) is the impedance of the vibrating
surface, and s is the vibrating surface area.

We can divide the acceleration term of Eq.
(1) into terms in the spatial and time domain
as following Eq.(2).

Atx’, v RACHR= A Ly IR{R)T (1) {2)

Hence, in the Eq.(1), the integration is rewitten
in condensed form by the defining a kernel,
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- Fig. 2. Geometry of acoustic field at z=z,,.
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If the integration of Eq.(1) is calculated in
spatial domain at z=z, shown in Fig.2, we
rewrite Eq.(1} with a certain time indepen-
dence as following equation.

petos ¥

2rlcos ¥ 3'}- )
1
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Using the kernel, we have, since Eq.(4)
is two dimensional convolution at z=z,

pix,¥ozod = Alx, ¥)**kix, v, 247 5

where symbol 4, denotes a two-dimensional
convolution{see Appendix). Applying the con-
volution theorem to Eq.(5), Eq.(5) is given as

pix, vizo) = F U [Atks ky) K ike hy. 707 g

where F! denotes the inverse Fourier trans-
form and A and K are the Fourier transform of
A and k, respectively. Expressing symbolicaily
the discrete Fourier transform(DFT)

Po X ¥. 26) =D LA (kg kyd K Lk by, 20} '

where the subscript D denotes the result of
calculation via the DFT and D7 represents the
inverse DFT. The internatioral mathematical
and statistical library(IMSL)} is used as a FFT
program for this study,

1. Relation of the DFT to the Continuous
Fourier Transform

The two-dimensional DFT of A(X,y) may be
derived from the continuous Fourier transform
as following equation.

Ap thy, kot ~Di AN 3 ).

VoA Hlonag woa Hes b4

v
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where a is the sample spacing and L is the aper-
ture window. The substitution of special func-
tions in Eq.(8) (from Appendix) gives the dis-
crete Fourier transform for A(x,y).
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where N=L/a, k= mdk--mf2z/1 randky=-ndk- n:
Here Ak represents the smallest spatial frequency
which can be represented by a single wavelength
across the aperture L.

The discrete Fourier transform on the radiat-
ed sound pressure fietd from the vibrating plate
is given as following equation.

AT K PT S & S ke dky An 'Kx, ky!?

I".\’l'r ':k.(. I\) 7o)
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where Ak - Yx/LLand kn- x/a Note that k_, is the
maximum spatial frequencyfone wavelength

across two samples).

2. The Errors Introduced by the DFT

While the theory of the DFT iz precise and
self-consistent and exactly describes the mani-
pulation performed on actual data samples when
a Fourier transform is to he computed, the
question remains to what degree the DFT ap-
proximates the Fourier transform of the func-
tion underlying the dats samples. Clearly, the
DFT can be only an approximation for the
continnous numerical evaluation since it provides
only for a finite ser of discrete frequencies. But
these discrete values are jot correct, if the
initial samples are not sufficiently closely spaced
1o represent high-frequency components present
ed in the underlying function. then hoth the
DET values and a smooth curve passing ihrough

them will be falsified by aliasing.
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With the technigue described in the pre-
vious section we can derive a relation between
the estimated pressure P (x,y,z,) and the actual
pressure p(x.y.z ).

At first, the convolution theorem is applied
to Eq.(10)

Puin, v, 2t - 7 'li‘\u ik, hyo  *% L .':‘RD ks hve 76,
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From Eq.(8)
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So that Eq.(11) becomes(refer toc Appendix)
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where the sum represents a double sum over |
and q. respectively, and N=L/a. The first con-
volution in Eq.(13) yieids

Ps ', N Zo) Z

1,9= -N 2

a' Atla, ga' ki'x la, v qa, 2ot

HEN

which looks like a discretized version of the

Eq.(4) obtained by replacing the double integral

with a double sum and setting dxdv equal to

a’. Of course, as a = 0, pix.y,2,) = p(x,7.2,).
From £q.(13) and (14),
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M a is small, we can replace Py with p to

give

Po (X, v, 2! = E P AL, v gL, 25)
1
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The above equation shows that the relation
between p and the actual pressure radiated by
the source, The summations operate only on
sound pressure p and represent the influence of
an two-dimensional set of planar sources all
vibrating in phase with the same velocity dis-
tribution as the actual source, €ach Jocated at a
node in an infinite lattice with internodal dis-
tance L. These are called replicated sources
generating the error in the calculation of acoustic
fields, that is the aliasing effect. Their influence
is smoothed slightly by the action of the con-
volutions with the sinc functions. The replicated
sources themselves are the inevitable results of
sampling in k space. The influence of the repli-
cated sources with the acoustic field p(x,y)
from the real plate source represents the aliasing
effects in k space. The influence of replicated
source causing the errors can be reduced by the
decrease of the ratio of the vibrating surface and
aperture, and the calculation of the farfield
region of sound pressure radiated from the vibra-
ting structures.

IH. APPLICATION OF FFT METHOD ON
THE SOUND RADIATION FROM A
CLAMPED CIRCULAR PLATE

The sound pressure radiated from a vibrating
surface is evaluated by using the Rayleigh integ-
ral that approximated Helmholtz integral at
acoustic farfield, The sound pressure radiating
from a plate as shown in Fig.1 is written as the
form having the time delay on each element of
plate.The equation onr the sound pressure is given

as®

fio s

9

' oo N

wir' @ t-Rfc) is the acceleration-time response
of the clamped circular plate to the centraf
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impact. In this paper, the plate vibrates in a
rigid infinite baffle where reflection or diff-
raction of sound does not occur at boundaries.
As using the normal mode method, Laplace
transform and convolution integral, the displace-
ment response of a clamped circular plate,
initially underformed and at rest, to impact force
Eq.{12) in Ref. 10(A*=0) can be written as

FoWalOWair') S'

o

W(r’. g1 ) ::nE—I

*
@Wn

* sinwordr, (8

The acceleration response of plate is obtained
by the differentiation of Eq.(18), twice.

In order to obtain the sound field by FFT
method, we can sepatate the acceleration of plate
into spatial and time domain.

: F Wi W, ( v )
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and R(R)} is given as
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where R={x'-? +32]7

From Eqs.(5),(6),(19) and (20), the acoustic
pressure field is calculated by using FFT method
at a fixed time. Examples of sound pressure
field to the central impact in accordance with
the acoustic fields at z=z, and the vibration
mode of the plate are shown in Figs.4,5 and
6 for the case of impact of the steel ball of {.504
cm-diam. on a 2 mm-thick, steel plate of 0.28 m
diameter, respectively. In Fig.7 the results of the
FFT method are compared with the direct
numerical evaluation on z-axis in time domain,

sinwh{t-7)

acoustic

field plane

vibrating

surface plane
X

plate

1 _J
r L
aperture

Fig. 3. Geometry on the location of the plate within
the aperture (64x64 array).

in Fig.3, the space aperture is a square of
length L on a gide and the size of the aperture
is chosen so that it occupies larger than 4 times
of the area of the vibrating plate. The aperture
is divided into a lattice of 64x64 points. The
data files of values(real or complex) for A(x,y}
and k(x.y.z,) at each the lattice point are used
as the starting point of calculations. Two-dimen-
sional Fourier transform of A(x.y) and kix,y.z,)
are computed by using the FFT program in-
ciuded in IMSL subroutine package. Following
Lq.(6) the results obtained by FFT technique
are multiplied each other and in order to obtain
the sound fields the results are computed by the
two-dimensional inverse Fourier transforsm with
FFT algorithm. Thus a 64x64 array containing
values of ©n(x.y.z)) is obtained. These 40Y%¢
complex data points are computed in about X
sec for one mode on Cyber 170-835 The Jdirecs
numerical evaluation of Rayleigh integral ix

computed in about 820 sec for one mode.



Numerical Evaluation of the Rayleigh Integral Using the FFT Method for Transient Sound Radiation 2

The length L of the aperture is fiexed at
89.6 cm and the lattice spacing is 1.4 ¢m. The
actual edge of the plate occurs at x/[.=0.15625,
The agreement is excelient for x/L<0.25 and
begins to differ slightly as the aperture boundary
is approached, In this case the nearest replicated
source contributes to this errors.

For (1,0) mode of. the clamped circular
plate the radiated sound pressure is shown in
Fig.4 and for (3,0) mode is given in Figs.5 and 6.
Figures 4 and 5 show the results for z,=10 cm.
As the acoustic plane moves away from the
surface of the plate to z /A, the contribution of
the near replicated source becomes relatively
stronger and the errors increase, where X is the
wavelength of interested mode and z_ /A is 0.077
and 0.673, respectively. Since the radiation
efficiency rapidly changes below the critical
frequency{the flexural wave speed has the same
speed as one in the ambient medium), that is,
while the radiation efficiency is one above the
critical frequency, for the frequency below the
critical frequency that rapidly decreases. In this
paper, the critical frequency for the bare steel
2 mm-thickness is about 5800 Hz.

As shown in Fig.6, for the acoustic field at
7o=25cm, the results of the sound pressure field
by FFT technique agree well with the direct
numerical integration of Rayleigh integral.
As z, the distance from the vibrating surface
to the acoustic plane, increases, the influence
of replicated source decreases.
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Real(a), and imaginary(b) components of the
pressute at the surface z,=10 cm. (1.0) mode
computed by a direct numerical integral of the
Rayleigh integral and by the FFT technique.
L=89.6 cm, t=0.81314 msec, 2mm-thick.
steel plate.
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steel plate.
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Fig. 6. Real(a), and imaginary(b) compeonents of the
pressure at the surface z =25 cm. (3,0) mode
computed by a direct numerical integral of the
Rayleigh integral and by the FFT techniq'ue.
L=89.6 c¢m, t=0.81314 msec, 2 mm-thick.
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Fig. 7. Comparison with the sound pressure radiated
from the plate(thick, 2mm) calculated by the
direct numerical integrat and the FFT techni-
que in according to the variation of time.
Bare steel ptate radius 14 cm, measurement
point (0,0,10).

The sound pressure-time history is shown in
Fig.7. The results of FFT technique agree with
those of the direct numerical integration. The
results of DFT can be only an approximation
since it provides only for a finite set of discrete
frequencies the waveform is more smooth than
the direct integral. The magnitudes of pressure
have some difference each other but the acoustic
sound pressure field is well predicted.

IV. CONCLUSION

We have tried to provide an insight into the
solution of Rayleigh integral using the two-
dimensional fast Fourier transform for the
transient sound radiation. The results of FFT
method agree well with the direct numerical
evaluation and also the computation time is
saved by using the fast Fourier transform algor-
ithm for the evaluation of the sound pressure
field over 1/200 times of the direct numerical
calculation for the 64x64 lattice. But as the
results, the detailed development of the physicat
significance of aliasing was presented. As the
distance of the interested acoustic field from the
vibrating surface increases, the influence of the
replicated sources decreases. The effect of the
replicated source is severe, in the case that the
driving frequency of the external forces is higher
than the critical frequency of the plate. Since
the radiation efficiency of the plate is about
one at the higher frequency than the critical
one. While, for below critical frequency, the
radiation efficiency rapidly decreases. Thus the
errors by the replicated sources changes in ac:
cordance with the driving frequency of the
exciting forces.

{n this paper, the application of the FFT
technique have concentrated on rectangulat
boundaries for haffled circular vibrating source.
Also the FFT method can he applicable to any
shaped geometry as well as this’ one, The t'F1
solution could be very powerful in predicting the

near and far fields of complex structures. The
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computation by direct numerical evaluation of
Rayleigh integral may take about 24 hour and by
using the FFT technique it requires about 8
min. for the acoustic fields in according to time
variation, Since the computation time in FFT
method is reduced than the direct one, because
the direct one requires the caculation of the
vibration in order to obtdin the sound pressure
at each mesh point in acoustic field but FFT
method is not. This is indeed a significant sav-
ings. With the growing use of array processors
in FFT analysis further time saving can be gained
with their use.
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APPENDIX

SPECIAL FUNCTIONS AND THEIR FOURIER
TRANSFORMS
* . One-dimensional convolution

* % . Two-dimensional convolution
fix, y)*¥*gix, y)= S S fix’, v/ )gix-x", v—-y ddx'dv

Iix—-D=1 ixi< L2

=1/2 IxI=L/2
=0 t"(l E'LfZ
i (x/a) ©
e anZ,: & (x--na)
M- xi - I§ix}
ll tx+4 n) =10 (x n integer
o}
1 M (x)dxe= 1}

"THi=0 x-n

I ix) is periodic with period.
M ix} fixe = i] fin) &ix ni
i

Mixem v+nd-—-Mix, v m,n integer

& = Dirac delta function

Sm &ix a) f(x) dx=fla}

SW Six) flx-al =t a)

S} ) =T (x)*8 (x) =[x
Si{=x}=81x)

sinc (x/a} = sinlzx/a}/ {xx/al
I éx, wd= Hix) [L ty

i~ vy [Oix:Os:

sinc {x, v} = sinc {x} sine {¥)

F o - Foutier transform (2-dimensivii;
s N dedur s p LT Ry
£ V(1) ~inverse Fourier transform (2-dimension)

e - .l_. _1! gd)(d_\-' {” Pier KLY
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