• Title/Summary/Keyword: Sound pressure

Search Result 1,364, Processing Time 0.028 seconds

Effect of the Measuring Method of Reverberation Time Using Impulse Response Method on the Normalized Impact Sound Pressure Level (임펄스응답적분법을 이용한 잔향시간의 측정방법이 규준화 바닥충격음레벨에 미치는 영향)

  • Lee, J.W.;Kwon, Y.P.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.34-39
    • /
    • 2006
  • For the evaluation of the normalized impact sound pressure level, the reverberation time of the receiving room should be measured. This paper deals with the effect of the time constant of FFT analyzer and the measuring points on reverberation time. It is found that the time constant should be in the range between 10 ms and 35 ms. While the effect of measuring points on the reverberation time is significant when the bandwidth is narrow it is negligible in the evaluation of the normalized impact sound pressure level.

Dynamic characteristics of Sound Radiated from a Vibrating Plate by Impact Force (충격가진에 의한 진동판의 방사음에 대한 동특성)

  • 오재응
    • The Journal of the Acoustical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.48-58
    • /
    • 1983
  • The transient sound radiation from the impact between a steel ball and a thick plate is analyzed theoretically and compared with experiment results. The derivation process itself is difficult to analyze sound radiation characteristics theoretically for a thick plate with some resonances but may be investigated from measured data. During mechanical impacts, arbitrary driving point importance for an elastic system enables to predict by using mechanical importance method. In order to obtain approximate solution for an impact model testing, the surface Helmholtz integral formulation based on the integral expression for pressure in the field in terms of surface pressure and normal velocity is used as a basis. A simple expression is developed for an impulsive response function, which is time dependent velocity potential and pressure for an impact may then be computed by a convolution of exciting force. In estimating of elastic-acoustical correlation problems, mechanical inertance, overall transfer function and radiation resistance obtained by signal processing techniques are used. The usefulness is confirmed by applying these methods prediction of arbitray driving pint inertance, radiated sound pressure and exciting force.

  • PDF

Binaural Directivity Pattern Simulation of the KEMAR Head Model with Two Twin Hearing Aid Microphones by Boundary Element Method

  • Jarng Soon Suck;Kwon You Jung;Lee Je Hyeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3E
    • /
    • pp.115-122
    • /
    • 2005
  • Two twin microphones may produce particular patterns of binaural directivity by time delays between twin microphones. The boundary element method (BEM) was used for the simulation of the sound pressure field around the head model in order to quantify the acoustic head effect. The sound pressure onto the microphone was calculated by the BEM to an incident sound pressure. Then a planar directivity pattern was formed by four sound pressure signals from four microphones. The optimal binaural directivity pattern may be achieved by adjusting time delays at each frequency while maintaining the forward beam pattern is relatively bigger than the backward beam pattern.

A study on sound radiation from isotropic plates stiffened by unsymmetrical beams (비대칭 보에 의해 보강된 등방성 평판의 음향방상에 관한 연구)

  • Kim, Taek-Hyun;Oh, Taek-Yul;Kim, Jong-Tye
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.753-761
    • /
    • 1998
  • The determination of sound pressure radiated from periodic plate structures is fundamental in the estimation of noise level in aircraft fuselages or ship hull structures. As a robust approach to this problem, here a very general and comprehensive analytical model is developed for predicting the sound radiated by a vibrating plate stiffened by periodically spaced orthogonal unsymmetrical beams subjected to a sinusoidally time varying point load. The plate is assumed to be infinite in extent, and the beams are considered to exert both line force and moment reactions on it. Using this theoretical model, the sound pressure levels on axis in a semi-infinited fluid (water) bounded by the plate were calculated using three numerical tools such as the Gauss-Jordan method, the LU decomposition method and the IMSL numberial package. Especially, the variation in the sound pressure levels and their modes were investigated according to the change in frequency, bay spacing and bay distance.

A Study on Reduction of Sound Noise Induced by Disk Rotation in Optical Disk Drives (광 디스크 드라이브의 공력소음 감소에 관한 연구)

  • 송인상;박건순;최학현;김수경;이승엽
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.693-702
    • /
    • 1999
  • We study the characteristics of airflow and sound noise induced by disk rotation in optical disk drives. The characteristics of airflow around a rotating disk surrounded by various tray structures are numerically investigated using a commercial CFD program and then compared with experimental results. Sound pressure and intensity caused by the fluid-structure interactions in the CD/DVD-ROM drive are measured, and the effect of the ariflow on the sound noise and disk vibration is discussed. In order to reduce airflow-induced noise and vibration around the rotating disk, tray geometry is modified. Both numerical and experimental studies implemented with different tray models show that the improved tray model alters the characteristics of the disk-induced airflow, causing the reduction of the airflow-induced sound level.

  • PDF

The effect of diffusers on the measurement of sound absorption in a reverberation room (잔향실법 흡음률 측정에 미치는 확산체의 영향)

  • Han, Hee-Kab;Kim, Kyung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1194-1197
    • /
    • 2006
  • Recently, international standard for measurement of sound absorption in a reverberation room has been amended. In the revised version, temperature, humidity and air pressure conditions are strictly restricted and also the concrete procedures are presented to reduce the differences in test results by adding inspection of diffusion, measurement uncertainty etc. In this paper, the systematic tests are conducted based on the inspection guide of diffusion defined by ISO 354 and the effects of diffusers on the measurement of sound absorption ratio are considered. As a result, we perceived that the averaged sound absorption ratio in mid and high frequency range is expected to measure around $0.05{\sim}0.1$ higher in high sound absorption material. Therefore, as for the reverberation room for measurement of sound absorption, we need to take into consideration not only the spatial standard deviation of sound pressure mandated by ISO 3741, but also, inspection regulation of diffusion showed by ISO 354.

  • PDF

Floor Impact Sound and Vibration Characteristics Affected by the Compressive Strength of Concrete (콘크리트 슬래브 압축강도에 따른 바닥충격진동 및 소음특성)

  • Jeong, Jeong-Ho;Yoo, Seung-Yup;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.796-799
    • /
    • 2005
  • In 2005, a regulation on the heavy-weight impact sound was released, which restricted concrete slab thickness of standard floor to 210mm. To reduce heavy-weight impact sound, damping materials and structural reinforcement system have been proposed. In this study, the effect of compressive strength on the heavy-weight impact vibration and sound were investigated. FEM analysis was conducted for the 34PY apartment with different concrete strength (210, 350, 420kg/cm$^2$). In addition, apartment floors with different concrete strength were constructed and the floor impact vibration and sound were measured. Results of FEM analysis and measurement show that the resonance frequency of concrete slab was increased by the increment of concrete strength. However, floor impact sound pressure level did not decrease because the nor impact vibration and sound pressure level in 63Hz band increased.

  • PDF

On the Frequency Dependency of Sound Quality Factors (음질 요소의 주파수 의존성에 대하여)

  • 류윤선;최재원;조희복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.286-292
    • /
    • 1997
  • Sound quality is becoming the major concern in passenger vehicle. The study on it has been done recently but it is not good enough. In order to improve the sound quality in passenger vehicle, so many noise sources must be considered and human feeling to the noise also be taken into account. In this paper, the sound quality was analyzed by vehicle road test which was carried out with varying the traveling speed. As basic factors for sound quality, only objective factors are considered such as loudness, sharpness, speech intelligibility, sound pressure level ... etc. The relations between sound pressure level and other factors are discussed from a point of view of traveling speed dependency. The frequency dependency of sound quality factor is also analyzed by frequency analysis.

  • PDF

Automation of electrical acoustic experimental apparatus for the directivity measurement of sound (소리의 지향성 측정을 위한 전기음향실험기기의 자동화)

  • Jarng, Soon-Suck;Ko, Jae-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.574-576
    • /
    • 2004
  • The directivity of the sound pressure increases the sensitivity of the incoming sound from specific directions. The directivity measurement of the sound pressure is usually done in an anechoic room using a sloping motor. In this paper a replaceable anechoic chamber was designed for the acoustic directivity pattern measurement. Electrical equipments were interfaced with a PC for experiment automatic control. Some comparative results are shown in the result.

  • PDF

Automatic control of experimental apparatus for sound's directivity measurement direction acoustic wave (소리의 방향성 측정을 위한 실험기기의 자동제어)

  • Jarang, Sun-Suck;Ko, Jae-Ha;Lee, Je-Hyeong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.591-594
    • /
    • 2004
  • The directivity of the sound pressure increases the sensitivity of the incoming sound from specific directions. The directivity measurement of the sound pressure is usually done in an anechoic room using a steping motor. In this paper a replaceable anechoic chamber was designed for the acoustic directivity pattern measurement. Electrical equipments were interfaced with a PC for experiment automatic control. Some comparative results are shown in the result.

  • PDF