• Title/Summary/Keyword: Sound Emission

Search Result 109, Processing Time 0.022 seconds

Effects an Acoustical Equipment on the Luring of Fish School (음향집어기의 집어 효과)

  • 장선덕
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.4
    • /
    • pp.75-82
    • /
    • 1986
  • A field experiment was carried out to clarify the effect of underwater sound on the luring of fish school. The effects of. the acoustic emission on the luring of fish school were checked actually at a set net fishing site in Namhae using a commercial acoustic equipment, Dairyo-8. An emitting system of sound was designed by the authors, and the ambient noise, the sound pressure level and the reaction of fish school were measured in the set net. 1. The predominent frequency band of ambient noise was 150Hz-400Hz,.and the sound emitted was 400Hz-100Hz. The sound pressure level of ambient noise in set net was higher at the landing part, and lower at the playgrond, the gate of court and "the enterance of inclined "passage. The ambient noise was increased with the time elapse-d at the stage of hauling net, but :it was decreased suddenly at the final stage due probably to the decrease of the swimming speed of the fish school. 2. The results of the observation and the recording paper of echo sounder indicate that the effect of emitting sound in the bag net of set net was remarkable for the luring of fish school in the early stage, but decreased after 30 minutes. The reaction of fish school is more sensitiv2 to the sound pressure level than the time intervals between the emission and the pause. For the purpos~ of practical use, it is nesessary to confirm what kind of sound pressure level is the best for the luring of fish school. 3. In response to the acoustic equipment(Dairyo-8), fish school started to swarm 20 minutes after the sound emission and scattered when the sound paused. As the emitting pattern of the acoustic equiment, the three seconds of emission after one second of pause was more effective than the continuous emission at the set net fishing ground. Catch of the fish(s during th~ sound ernissio:l at the gate of court was three to five times more than that of no emission.

  • PDF

A Thronging Response of the Shoal of Rudder Fish , Seriola Dumerili ( Risso ) to Audible Underwater Sound (수중 가청음에 대한 잿방어 어군의 유집 반응)

  • 이창헌
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.4
    • /
    • pp.285-289
    • /
    • 1997
  • A Held experiment was carried out to confirm the effect of underwater sound on the luring of fish school of rudder fish in a set net at the coast of Cheju Island. The effects of the acoustic emission on the luring of fish school were observed at a cage around a set net fishing ground using a manufactured underwater speaker. Underwater sounds that were emitted for the luring of fish school were the pure sounds of which frequency were 300Hz and 400Hz, engine noise and swimming sound. The results of the observation are as follows : 1. The input and output wave forms of a manufactured underwater speaker in water tank were similar to those in measurement frequencies. The result of the observation indicated that it could be used for the purpose of the sound emission in measurement frequencies. 2. The effect of the emitted pure sound of 300Hz, 400Hz was remarkable for the luring of fish school in 2 minutes after the sound emission. The reaction of fish school was more sensitive to the pure sound of 400Hz than 300Hz. 3. The effect of the emitted engine noise was more remarkable than that of the pure sound for 3 minute continuously. On the feeding sound, fish formed a shoal and swimmed, but didn't gather around the underwater speaker. 4. The feeding and swimming sound spectra on rudder Hsh showed similar sound pressure distribution each other, they appeared low sound pressure in frequencies of 200-600Hz.

  • PDF

The Analysis of Acoustic Emission Spectra in a 36 kHz Sonoreactor (36kHz 초음파 반응기에서의 원주파수 및 파생주파수의 음압 분포 분석)

  • Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.128-134
    • /
    • 2016
  • Acoustic emission spectra was analyzed to investigate the distribution of sound pressure in a 36 kHz sonoreactor. The sound pressure of fundamental frequency (f: 36 kHz), harmonics (2f: 72 kHz, 3f: 108 kHz, 4f: 144 kHz, 5f: 180 kHz, 6f: 216 kHz), and subharmonics (1.5f: 54 kHz, 2.5f: 90 kHz, 3.5f: 126 kHz, 4.5f: 162 kHz, 5.5f: 198 kHz, 6.5f; 234 kHz) was measured at every 5 cm from the ultrasonic transducer using a hydrophone and a spectrum analyzer. It was revealed that the input power of ultrasound, the application of mechanical mixing, and the concentration of SDS affected the sound pressure distributions of the fundamental frequency and total detected frequencies frequencies significantly. Moreover a linear relationship was found between the average total sound pressure and the degree of sonochemical oxidation while there was no significant linear relationship between the average sound pressure of fundamental frequency and the degree of sonochemical oxidation.

The Noise Influence Assessment according to the Change of the Offset Type Print Machine's Power (옵셋 인쇄기계 동력규모 변화에 따른 소음 영향 평가)

  • Gu, Jinhoi;Kwon, Myunghee;Lee, Wooseok;Lee, Jaewon;Park, Hyungkyu;Kim, Samsu;Yun, Heekyung;Lee, Kyumok;Jung, Daekwan;Seo, Chungyoul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.682-686
    • /
    • 2014
  • Nowadays, the needs to revise the classification criteria for noise emission facilities have been suggested by the related industries. Because there existed many reasonable factors in the criteria regarding the noise emission facilities. And the noise emission facility classification criterion of the print machine changed from 50 HP to 100 HP in 2013. But the increasement of the noise emission facility classification criterion of the print machine can cause adverse effects like the bigger noise. So, in this paper, we measured the print machine's sound power level according to the changes of the print machine's power to assess the adverse effects. The measurement method applied with KS I ISO 9614-2(1996). The corelation between the sound power level and the power of print machines was analyzed by regression analysis. In this paper, we found that the sound power level of the print machines can increase about 1.3 dB in the condition of that the power of print machine increases from 50 HP to 100 HP. And we found that the sound power level of the print machines can increase about 1.0 dB for a increasement of 1,000 SPH(sheet per hour) of printing speed. The noise emission characteristics of print machine stuied in this paper will be useful to design the noise reduction plan in the future.

An Experimental Study(I) on the Noise Emission Characteristics of Motor Vehicles Using Sound Intensity Measurement Method -A Case of Engine and Exhaust Noise- (음향 인텐시티 측정법을 이용한 자동차의 소음방사특성에 관한 실험적 연구 I -엔진 및 배기계 부위소음을 중심으로-)

  • 양관섭;유남구;박병전;김영완
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.843-849
    • /
    • 1996
  • Locations and emission characteristics of noise source of motor vehicles are great important factors to control the road traffic noise in effective ways. From results of this study on emission characteristics of engine and exhaust noise, we could find that every noise emission of different kind of vehicles has smilar pattern. The main emission locations of engine noise for the front of vehicle became the space between the road surface and bottom of the body and radiator grill, and for the side of vehicle became the space between the road surface and bottom nearby the front wheel. In case of exhaust noise of passenger-car and light truck, all the highest sound intensity level located near surface of road. But it is hard to conclude the height of noise source of driving vehicles with only results of this study. So further studies are needed to check the emission characteristics of noise.

  • PDF

Experimental study for characteristics of diffuse sound field formed by sound source directivity (음원의 지향성이 확산음장 형성에 미치는 영향에 관한 실험연구)

  • Shin, Il-Seop;Cha, Kwang-Seok;Cho, Chang-Geun;Lee, Dae-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1002-1006
    • /
    • 2000
  • It is diffuse sound field that measuring condition of absorption ratio and sound transmission loss for material consist of building are measured in reverberartion room and on-site. In this study, for upkeeping diffuse sound field in reverberation room, it is measured and etimated that sound field is effected according to sound source lacation and characteristics of emission directivity for sound source.

  • PDF

Characteristics of Industrial Machinery Noise (산업기계류의 소음 특성)

  • Kang, Dae-Joon;Gu, Jin-Hoi;Lee, Jae-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.160-165
    • /
    • 2010
  • As the various industrial machinery has come into being by development of industrial technology, the productivity of the basic industrial machinery has improved. However, at the same time, noise from various industrial machinery disturbs the quiet environment. There are 35 kinds of the noise emission machinery defined in the noise and vibration control act according to the horse power and the number of machinery. These were classified in 1992, and the characteristics of the noise emission machinery may be different from the past one. So we need to investigate the characteristics of the noise emitted by machinery to control it rightly. We measured sound intensity of 32 noise emission machinery to calculate the sound power levels of those and investigated the characteristics of the sound power level of those according to the frequency. We found that the forging machine, concrete pipe and pile making machine, sawing machine, etc. are noisy. The generator, the concrete pipe and pile making machine, etc. emit the low frequency noise, but the molding machine, the stone cutter, the metal cutter, etc. emit the high frequency noise.

Characteristics of Machinery Noise (기계류의 소음 특성)

  • Kang, Dae-Joon;Gu, Jin-Hoi;Lee, Jae-Won;Kwon, Hyuk-Je;Park, Hyeong-Kyu;Kim, Ji-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.904-908
    • /
    • 2008
  • As the various industrial production machinery has come into being by development of industrial technology, the productivity of the basic industrial production machinery has improved and the international competitiveness of the one of Korea has strengthened. However, at the same time, noise from various industrial production machinery disturbs the quiet environment. There are 35 kinds of the noise emission machinery defined in the noise and vibration control act according to the horse power and the number of machinery. These were classified in 1992 through investigation from 1990 to 1991, and the characteristic of the noise emission machinery may be different from the past one. So we need to investigate the characteristics of the noise emitted by machinery to control it rightly. Also we need to investigate the new noise emission machinery which has come into being recently. In this survey, we measured sound intensity of 32 noise emission machinery to calculate the sound power levels of those and investigated the characteristic of the sound power level of those according to the frequency. From the survey, we found that the forging machine, concrete pipe and pile making machine, sawing machine, etc. are the noisy machinery. And the automatic packing machine, sewing machine, centrifuge, etc. are the silent machinery. Also the generator, the concrete pipe and pile making machine, the printing machine, etc. emit the low frequency noise, and the molding machine, the stone cutter, the metal cutter, etc. emit the high frequency noise. Lastly, we intented to propose the proper guide line of classifying noise emission machinery.

  • PDF

Localization of Rotating Sound Sources Using Beamforming Method (빔 형성 방법을 이용한 회전하는 음원의 위치 판별에 관한 연구)

  • 이재형;홍석호;최종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.837-842
    • /
    • 2004
  • The positions of rotating sound sources have been localized by experiments with the Doppler effects removed. In order to do-Dopplerize the sound signals emitted from moving sources, two kinds of signal reconstruction methods were applied. One is the forward propagation method and the other is the backward propagation method. Forward propagation method analyze the source emission time based on the instantaneous distance between sensors and the assumed source position, then the signals are reconstructed with respect to the emission time. On the other hand, the backward method uses time delay to do-Dopplerize the acquired data for the received time of reference. In both techniques, the reconstructed signal data were processed using beamforming algorithm to produce power distributions at the frequency of interest. Experiments have been carried out for varying frequencies, rotating speeds and the object distances. Forward propagation method has shown better performance in locating source position than the backward propagation method.

  • PDF

Numerical Simulation of Aerodynamic Sound by the Finite Difference Lattice Boltzmann Method (차분격자볼츠만법에 의한 유동소음의 수치계산)

  • 강호근;김은라
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.10-17
    • /
    • 2004
  • In this research, a numerical simulation for the acoustic sounds around a two-dimensional circular cylinder in a uniform flaw was developed, using the finite difference lattice Boltzmann model. We examine the boundary condition, which is determined by the distribution function concerning density, velocity, and internal energy at the boundary node. Pressure variation, due to the emission of the acoustic waves, is very small, but we can detect this periodic variation in the region far from the cylinder. Daple-like emission of acoustic waves is seen, and these waves travel with the speed of sound, and are synchronized with the frequency of the lift on the cylinder, due to the Karman vortex street. It is also apparent that the size of the sound pressure is proportional to the central distance to the circular cylinder. The lattice BGK model for compressible fluids is shown to be a powerful tool for the simulation of gas flaws.