• 제목/요약/키워드: Sound Design

Search Result 1,470, Processing Time 0.034 seconds

I3A Framework of Defense Network Centric Based C2 Facilities (국방 NC 기반 C2 시설 I3A Framework)

  • Kim, Young-Dong;Lee, Tae-Gong;Park, Bum-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.615-625
    • /
    • 2014
  • Ministry of National Defense, MND, established a "Master Plan of Military Facility" in 2010 based on the defense reform to prepare for future war. It was a plan for consolidating small military facilities into battalion units, reflecting on and preparing for the needs of various changes in defense environment as well as balanced growth of ROK Army, Navy, and Air Force. However, to move forward with "Military Facility Master Plan," current design criteria for military facilities need to be revised to be enacted due to numerous calculation errors in facility footprints because of the absence of a sound facility criteria. Because the future war environment will be changed from Platform basis to Network Centric Warfare basis, Command & Control capability of C4I systems is getting more important. Therefore, Successful mission accomplishment can be secured by convergence of facility and military Information Technology(IT). So, MND should quickly prepare for the operational guidance, design criteria and policy that are suitable for Network Centric Warfare accomplishment, and implement infrastructure of IT and installation of C2 facility in conjunction with consolidation movement of military facilities. In this paper, we propose the defense I3A framework in order to solve this problem.

Design of Multi-FPNN Model Using Clustering and Genetic Algorithms and Its Application to Nonlinear Process Systems (HCM 클러스처링과 유전자 알고리즘을 이용한 다중 FPNN 모델 설계와 비선형 공정으로의 응용)

  • 박호성;오성권;안태천
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.343-350
    • /
    • 2000
  • In this paper, we propose the Multi-FPNN(Fuzzy Polynomial Neural Networks) model based on FNN and PNN(Polyomial Neural Networks) for optimal system identifacation. Here FNN structure is designed using fuzzy input space divided by each separated input variable, and urilized both in order to get better output performace. Each node of PNN structure based on GMDH(Group Method of Data handing) method uses two types of high-order polynomials such as linearane and quadratic, and the input of that node uses three kinds of multi-variable inputs such as linear and quadratic, and the input of that node and Genetic Algorithms(GAs) to identify both the structure and the prepocessing of parameters of a Multi-FPNN model. Here, HCM clustering method, which is carried out for data preproessing of process system, is utilized to determine the structure method, which is carried out for data preprocessing of process system, is utilized to determance index with a weighting factor is used to according to the divisions of input-output space. A aggregate performance inddex with a wegihting factor is used to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of this aggregate abjective function which it is acailable and effective to design to design and optimal Multi-FPNN model. The study is illustrated with the aid of two representative numerical examples and the aggregate performance index related to the approximation and generalization abilities of the model is evaluated and discussed.

  • PDF

A STUDY ON COMPARISON OF VARIOUS KINDS OF CLASSII AMALGAM CAVITIES USING FINITE ELEMENT METHOD (유한요소법을 이용한 수종 2급 아말감 와동의 비교연구)

  • Seok, Chang-In;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.432-461
    • /
    • 1995
  • The basic principles in the design of Class II amalgam cavity preparations have been modified but not changed in essence over the last 90 years. The early essential principle was "extension for prevention". Most of the modifications have served to reduce the extent of preparation and, thus, increase the conservation of sound tooth structure. A more recent concept relating to conservative Class II cavity preparations involves elimination of occlusal preparation if no carious lesion exists in this area. To evaluate the ideal ClassII cavity preparation design, if carious lesion exists only in the interproximal area, three cavity design conditions were studied: Rodda's conventional cavity, simple proximal box cavity and proximal box cavity with retention grooves. In this study, MO amalgam cavity was prepared on maxillary first premolar. Three dimensional finite element models were made by serial photographic method. Linear, eight and six-nodal, isoparametric brick elements were used for the three dimensional finite element model. The periodontal ligament and alveolar bone surrounding the tooth were excluded in these models. Three types model(B option, Gap option and R option model) were developed. B option model was assumed perfect bonding between the restoration and cavty wall. Gap option model(Gap distance: $2{\mu}m$) was assumed the possibility of play at the interface simulated the lack of real bonding between the amalgam and cavity wall (enamel and dentin). R option model was assumed non-connection between the restoration and cavty wall. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as followed. 1. Rodda's cavity form model showed greater amount of displacement with other two models. 2. The stress and strain were increased on the distal marginal ridge and buccopulpal line angle in Rodda's cavity form model. 3. The stress and strain were increased on the central groove and a part of distal marginal ridge in simple proximal box model and proximal box model with retention grooves. 4. With Gap option, Rodda's cavity form model showed the greatest amount of the stress on distal marginal ridge followed by proximal box model with retention grooves and simple proximal box model in descending order. 5. With Gap option, simple proximal box model showed greater amount of stress on the central groove with proximal box model with retention grooves. 6. Retention grooves in the proximal box played the role of supporting the restorations opposing to loads.

  • PDF

A Conceptual Study on Blockchain Technology-based STO Platform Creation for Ship Finance (블록체인 기술을 활용한 선박금융 STO 플랫폼 구축에 대한 연구)

  • Ahn, Soon-Goo;Yun, Hee-Sung
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.1
    • /
    • pp.31-47
    • /
    • 2022
  • While the ship finance industry has long been struggling with diminishing involvements from the private sector, government-run banks have consistently increased their presence in maritime finance. To address such concerns, this research conceptually explores the creation of blockchain technology-driven security token offering (STO) platforms. To suggest a sound platform model, this piece first examines key design principles. Based on the integral perspective on the digital platform, this paper exhibits three core design principles to create a virtuous platform ecosystem, then sets out STO platform design guidelines. This paper further explores an STO platform model by considering conventional ship finance systems and practices in Korea. The STO platform has three main effects; 1) the wider availability of STOs can enlarge both the scope and size of ship finance users, 2) the activation of security token transactions leads to an increase in participation, and 3) possibilities to create complementary innovative financial services can further encourage the participation of private investors. The STO ecosystem may contribute to the shipping, shipbuilding, and ship finance industries by enhancing its attractiveness to the general public and by creating positive externalities for Busan as a maritime finance center.

A Study of NMEA Protocol Multiplexer Simulation on the based optimizing Queue (최적화된 큐 기반의 NMEA 프로토콜 멀티플렉서 시뮬레이션에 관한 연구)

  • Park Si-Hyoung;Jung Sung-Hun;Kim Chang-Soo;Yim Chang-Mook;Yim Jae-Hong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.15-19
    • /
    • 2004
  • Domestic use, or embody program that transmit NMEA protocol using multi port as software and is using because there is no fee and product that develop NMEA protocol Multiplexer, import mounting for foreign climax present. These method is paid or there is problem that must make out special processing part in each application program. Also, each mountings that display NMEA protocol can cause double resources waste and damage etc. because manufacturing firm and platform are different. Can act separatively as single hardware module of reliable processing method and high efficiency to supplement this in this treatise, and because using design of optimized cue, heighten memory efficiency of module, and proposed NMEA protocol Multiplexer that can keep high trustability of Come on, deviation compass, echo sound, mountings of GPS and so on and real time communication that is main input sensor equipment about embodiment.

  • PDF

A Study on Static Situation Awareness System with the Aid of Optimized Polynomial Radial Basis Function Neural Networks (최적화된 pRBF 뉴럴 네트워크에 의한 정적 상황 인지 시스템에 관한 연구)

  • Oh, Sung-Kwun;Na, Hyun-Suk;Kim, Wook-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2352-2360
    • /
    • 2011
  • In this paper, we introduce a comprehensive design methodology of Radial Basis Function Neural Networks (RBFNN) that is based on mechanism of clustering and optimization algorithm. We can divide some clusters based on similarity of input dataset by using clustering algorithm. As a result, the number of clusters is equal to the number of nodes in the hidden layer. Moreover, the centers of each cluster are used into the centers of each receptive field in the hidden layer. In this study, we have applied Fuzzy-C Means(FCM) and K-Means(KM) clustering algorithm, respectively and compared between them. The weight connections of model are expanded into the type of polynomial functions such as linear and quadratic. In this reason, the output of model consists of relation between input and output. In order to get the optimal structure and better performance, Particle Swarm Optimization(PSO) is used. We can obtain optimized parameters such as both the number of clusters and the polynomial order of weights connection through structural optimization as well as the widths of receptive fields through parametric optimization. To evaluate the performance of proposed model, NXT equipment offered by National Instrument(NI) is exploited. The situation awareness system-related intelligent model was built up by the experimental dataset of distance information measured between object and diverse sensor such as sound sensor, light sensor, and ultrasonic sensor of NXT equipment.

The effects of intensive gait training with body weight support treadmill training on gait and balance in stroke disability patients: a randomized controlled trial

  • Lee, Byung Joon;Lee, Hwang Jae;Lee, Wan Hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.2 no.2
    • /
    • pp.104-110
    • /
    • 2013
  • Objective: The purpose of this study was to investigate the effects of intensive gait training with body weight support treadmill training on gait and balance in stroke disability patients. Design: Randomized controlled trial. Methods: Twenty-six stroke patients (20 men and 6 women) participated in this study. All subjects were hospitalized patients. They were randomly divided into two groups: the experimental group (body weight supported treadmill training group, n=14) and control group (treadmill group, n=12). The mean ages were 52.07 years (experimental group) and 53.83 years (control group). Subjects in both groups received conventional training 10 times/wk. Subjects in the experimental group practiced body weight supported treadmill training for 30 minutes a day, 3 day/wk. Subjects in the control group practiced treadmill training for 30 minutes. The Berg Balance Scale (BBS) and GAITRite were used to evaluate balance and gait parameters (step length, cadence and gait speed) before and after the intervention. Results: BBS scores in the experimental group showed significantly greater improvement ($4.33{\pm}1.54$), compared with the control group (p<0.05). Significantly greater improvement in the gait speed ($24.13{\pm}4.53$ cm/s), affected side step length ($10.40{\pm}3.42$ cm), sound side step length ($11.97{\pm}3.29$ cm), and cadence ($23.88{\pm}5.52$ step/min), compared with the control group (p<0.05). Conclusions: Intensive gait training with Body Weight Support Treadmill Training may improve gait and balance in subacute stroke.

Investigation of Mechanism of Frictional Impulse Noise in Closed Cabinet (캐비닛 구조물의 내부 마찰소음 발생 메커니즘에 관한 실험적 연구)

  • Lee, Dong Gyu;Park, Jung-Hyun;Park, Ki Hong;Ha, Byung-Kuk;Kim, Hyeong-Sik;Park, Sang Hu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.249-255
    • /
    • 2013
  • A large-sized refrigerator has a complicated inner structure such as a shelf and a rack for product loading. Therefore, when the refrigerator door is opened and closed, the temperature inside the refrigerator varies and vibrations occur due to the physical force applied for opening and closing the door. Owing to these factors, an abnormal sound is generated by the relative distortion between the inner structures. In this study, we aimed to clarify the mechanism that generates this abnormal noise inside the refrigerator using experimental approaches, and we also investigated ways by which to reduce this noise. Toward this end, we developed an experimental setup for measuring the noise, temperature, inner pressure, as well as amount of vibration, and we analyzed the main factors causing the noise based on the experimental results. Furthermore, we suggested a way by which to reduce the noise; this method can be applied in the design stage itself.

A Study on the Positive Effects of Horror Adventure Game "White Day" (호러어드벤처게임 <화이트데이>의 순기능성에 관한 연구)

  • Lee, Jae-Hong
    • Journal of Korea Game Society
    • /
    • v.12 no.3
    • /
    • pp.37-48
    • /
    • 2012
  • "White Day", a horror adventure game that has gone down in the history of the Korean gaming industry, is not a cruel horror game with hideous monsters and spooky mood, but a Korean-style horror game with auditory effects of ghastly sound. This paper aims at identifying the positive story-telling structure through the components of the game. This study found that the game is based on a well-organized scenario by the background, events and characters. In addition, its design and story-telling structure turned out to reinforce the positive effects of the game, by not imitating the western-style splatter games. As it provides players with playful components that bear mimicry and ilinx to maximize interactive fun, White Day is a prime example of positive games that are strongly needed in this era.

Resonance Condition of the Resonance Cavity and Air Gap in the Sacred Bell of the Great King Seongdeok (성덕대왕신종의 명동과 간극의 공명조건)

  • Kim, Seock-Hyun;Jeong, Won-Tae;Kang, Yun-June
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.223-230
    • /
    • 2011
  • Korean bell is hung with some air gap between the bell bottom and the ground. In addition, it has a peculiar acoustic element, so called resonance cavity below the bell. A proper design of the air gap and cavity size dramatically amplifies the bell sound by resonance effect. Bell interior cavity, air gap and resonance cavity consist of an acoustic cavity system. When the acoustic cavity frequency coincides with the natural frequency of the bell body, the frequency component is significantly amplified. On the Sacred Bell of the Great King Seongdeok, this study proposes a resonance condition of the cavity system considering air gap effect for the first time. With the exact dimension of the bell, boundary element analysis is performed using SYSNOISE. Finally, this study reveals how the temperature in season influences the resonance condition and proposes a concept of variable type resonance cavity. By using the variable type resonance cavity, the cavity size is controlled on site and exact resonance is available regardless of temperature difference in season.