• Title/Summary/Keyword: Solvable

Search Result 131, Processing Time 0.025 seconds

COMPOSITION OF POLYNOMIALS OVER A FIELD

  • Choi, EunMi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.497-506
    • /
    • 2009
  • This work studies about the composition polynomial f(g(x)) that preserves certain properties of f(x) and g(x). We shall investigate necessary and sufficient conditions of f(x) and g(x) to be f(g(x)) is separable, solvable by radical or split completely. And we find relationship of Galois groups of f(g(x)), f(x) and of g(x).

  • PDF

UNSOLVABILITY OF SOME PARTIAL DIFFERENTIAL OPERATOR

  • Kim, Rak-Joong
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.73-76
    • /
    • 1998
  • It is proved that the partial differential operator $D_x + ix^q D^2_y$ is not locally solvable in any open set which intersects the line x = 0, when $q = - \frac{2l-1}{2k-1}$ is not an integer.

  • PDF

On the galois groups of the septic polynomials

  • Lee, Geon-No
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.23-31
    • /
    • 1996
  • Our main purpose in this paper is to determine the Galois group of the given irreducible septic polynomial ove Q by using three resolvant polynomials and the discriminant of the given polynomial.

  • PDF

UNIMODULAR GROUPS OF TYPE ℝ3 ⋊ ℝ

  • Lee, Jong-Bum;Lee, Kyung-Bai;Shin, Joon-Kook;Yi, Seung-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.5
    • /
    • pp.1121-1137
    • /
    • 2007
  • There are 7 types of 4-dimensional solvable Lie groups of the form ${\mathbb{R}^3}\;{\times}_{\varphi}\;{\mathbb{R}}$ which are unimodular and of type (R). They will have left. invariant Riemannian metrics with maximal symmetries. Among them, three nilpotent groups $({\mathbb{R}^4},\;Nil^3\;{\times}\;{\mathbb{R}\;and\;Nil^4)$ are well known to have lattices. All the compact forms modeled on the remaining four solvable groups $Sol^3\;{\times}\;{\mathbb{R}},\;Sol_0^4,\;Sol_0^'4\;and\;Sol_{\lambda}^4$ are characterized: (1) $Sol^3\;{\times}\;{\mathbb{R}}$ has lattices. For each lattice, there are infra-solvmanifolds with holonomy groups 1, ${\mathbb{Z}}_2\;or\;{\mathbb{Z}}_4$. (2) Only some of $Sol_{\lambda}^4$, called $Sol_{m,n}^4$, have lattices with no non-trivial infra-solvmanifolds. (3) $Sol_0^{'4}$ does not have a lattice nor a compact form. (4) $Sol_0^4$ does not have a lattice, but has infinitely many compact forms. Thus the first Bieberbach theorem fails on $Sol_0^4$. This is the lowest dimensional such example. None of these compact forms has non-trivial infra-solvmanifolds.

Lagrange and Polynomial Equations (라그랑주의 방정식론)

  • Koh, Youngmee;Ree, Sangwook
    • Journal for History of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.165-182
    • /
    • 2014
  • After algebraic expressions for the roots of 3rd and 4th degree polynomial equations were given in the mid 16th century, seeking such a formula for the 5th and greater degree equations had been one main problem for algebraists for almost 200 years. Lagrange made careful and thorough investigation of various solving methods for equations with the purpose of finding a principle which could be applicable to general equations. In the process of doing this, he found a relation between the roots of the original equation and its auxiliary equation using permutations of the roots. Lagrange's ingenious idea of using permutations of roots of the original equation is regarded as the key factor of the Abel's proof of unsolvability by radicals of general 5th degree equations and of Galois' theory as well. This paper intends to examine Lagrange's contribution in the theory of polynomial equations, providing a detailed analysis of various solving methods of Lagrange and others before him.

NO-WAIT OR NO-IDLE PERMUTATION FLOWSHOP SCHEDULING WITH DOMINATING MACHINES

  • WANG JI BO;XIA ZUN QUAN
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.419-432
    • /
    • 2005
  • In this paper we study the no-wait or no-idle permutation flowshop scheduling problem with an increasing and decreasing series of dominating machines. The objective is to minimize one of the five regular performance criteria, namely, total weighted completion time, maximum lateness, maximum tardiness, number of tardy jobs and makespan. We establish that these five cases are solvable by presenting a polynomial-time solution algorithm for each case.

ABS ALGORITHMS FOR DIOPHANTINE LINEAR EQUATIONS AND INTEGER LP PROBLEMS

  • ZOU MEI FENG;XIA ZUN QUAN
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.93-107
    • /
    • 2005
  • Based on the recently developed ABS algorithm for solving linear Diophantine equations, we present a special ABS algorithm for solving such equations which is effective in computation and storage, not requiring the computation of the greatest common divisor. A class of equations always solvable in integers is identified. Using this result, we discuss the ILP problem with upper and lower bounds on the variables.

LINEARIZED MODELLING TECHNIQUES

  • Chang, Young-Woo;Lee, Kyong-Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • For analyzing systems of multi-variate nonlinear equations, the linearized modelling techniques are elaborated. The technique applies Newton-Raphson iteration, partial differentiation and matrix operation providing solvable solutions to complicated problems. Practical application examples are given in; determining the zero point of functions, determining maximum (or minimum) point of functions, nonlinear regression analysis, and solving complex co-efficient polynomials. Merits and demerits of linearized modelling techniques are also discussed.

  • PDF