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NON-REAL GROUPS WITH EXACTLY

TWO CONJUGACY CLASSES OF THE SAME SIZE

Sajjad Mahmood Robati

Abstract. In this paper, we show that A4 is the only finite group with

exactly two conjugacy classes of the same size having some non-real linear
characters.

1. Introduction

There are many papers on the S3-conjecture which state that S3 is the only
non-abelian finite group with conjugacy classes of distinct sizes. This open
conjecture was solved for solvable groups in [14, 16]. In [5], Boner and Ward
investigated a problem with the weakened hypothesis on conjugacy class sizes,
that is, the classification of finite groups having exactly two conjugacy classes
of the same size. Groups satisfying the weakened hypothesis are semi-rational
groups, defined in [6]. Moreover, their conjugacy classes with unique size are
rational and the two other conjugacy classes may be rational, real, or non-
real. If a finite group G has two non-real conjugacy classes, then G contains
two non-real irreducible characters, both of them may be linear or non-linear.
Darafsheh in [7] conjectured that the only non-real groups with exactly two
conjugacy classes of the same size are A4, PSL(2, 7). In this paper, we prove
that A4 is the only finite group with exactly two conjugacy classes of the same
size having some non-real linear characters.

On the other hand, the authors in [1, 2] classify all finite groups with ex-
actly two non-linear irreducible characters of equal degrees. In Proposition
2.6, we show that S4, D10, A5, and PSL(2, 7) are the only finite groups with
exactly two non-central conjugacy classes of the same size and two non-linear
irreducible characters of the same degree.

For the sake of convenience, we introduce some notations. Let clG(a) denote
the conjugacy class of a in G and Lin(G) denote the set of all the linear charac-
ters of G. We define Irr1(G) to be the set of all the non-linear irreducible char-
acters of G and following this notation, define cd1(G) = {χ(1) |χ ∈ Irr1(G)}.
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Moreover, let R denote the set of all real elements of G and o(x) denote the
order of x. Further notations and definitions are standard.

2. Main results

An element g ∈ G is a Camina element of G if χ(g) = 0 for all χ ∈ Irr1(G).
By Lemma 2.1 of [15], g is a Camina element if and only if cl(g) = gG′. We
say that G is a Camina group if every element in G \G′ is a Camina element
of G. In [8], Camina groups were described as follows:

Lemma 2.1 ([8]). Let G be a finite Camina group. Then G is a non-abelian
p-group, a Frobenius group with Frobenius kernel G′, or a Frobenius group with
Frobenius complement isomorphic to Q8 and G′ is a subgroup of index 4.

It is clear that the Frobenius complement of a Camina group is solvable.

Proposition 2.2. Let G be a Camina group with exactly two non-central con-
jugacy classes of the same size. Then G ∼= A4 or D10.

Proof. By Lemma 2.1, a Camina group G is either a non-abelian p-group or a
Frobenius group. Assume that G is a Frobenius group with a Frobenius kernel
K and a solvable complement H. Since G has exactly two conjugacy classes
of the same size and |clG(x)| = |clH(x)||K| for all x ∈ H \ {1}, then H has at
most two nontrivial conjugacy classes of the same size.

First, suppose that the non-trivial conjugacy classes of H are of distinct
sizes, then by Theorem 16 of [16], H is either C2 or S3. Since H is of even
order, then by Theorem 13.3 of [9], we have that K is abelian and by Theorem
13.8 of [9], (|K| − 1)/|H| = 2 and |K| = 5 or 13. Therefore since H is a
subgroup of Aut(K), then H ∼= C2 and this follows that G ∼= C5 o C2

∼= D10.
Suppose, now, that H has exactly two non-trivial conjugacy classes of the

same size, then by Theorem 6 of [3, p. 278] |Z(H)| 6= 1 and by Corollary 3 of [11]
H ∼= C3. Consequently, since K is nilpotent and |clG(x)| = |clK(x)||H| for all
x ∈ K\{1}, then |clG(z)| = 3 for all z ∈ Z(K)\{1} and so |Z(K)| = 4. HenceK
is a 2-group and by Theorem 3 of [17], K ′ ⊆ Z(K). Thus |clK(x)| = 1, 2, or 4
and |clG(x)| = 3, 6, or 12 for each x ∈ K \ {1} and by the hypothesis we
have that 2n = |K| ≤ 1 + 3 + 6 + 12 = 22, thus n is equal to 2, 3, or 4 and
|G| = 12, 24, or 48. Using GAP [10] we can obtain G is isomorphic to A4.
Thus the only Frobenius groups satisfying the hypothesis are A4 and D10.

If G is a non-abelian p-group and p is odd, then G has at least two non-
central conjugacy classes of each size. If G satisfies the hypothesis, then G
has exactly two non-central conjugacy classes which are of the same size which
this is impossible by Theorem 1 of [11]. Now, assume that G is a 2-group and
|Z(G)| = 2m, then the class equation and our assumptions yield

(2.1)

2n = |G| ≤ 2m + (2 + · · ·+ 2n−m−1 + 2n−m−1)

=
2n−m − 1

2− 1
+ 2m + 2n−m−1 < 2n−m+1 + 2m,
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which implies that

(2.2) 2n−m ≤ 2n−2m+1

which is impossible. Thus there does not exist a p-group satisfying the assump-
tion. �

In the following results, let Pq be a Sylow q-subgroup of G, F (G) be the
Fitting subgroup of G, and π(G) be the set of prime numbers dividing the
order of G.

Lemma 2.3 (Theorem 1 of [12]). Let G be a soluble group all of whose elements
have prime power order. Then F (G) = Op(G) for some p ∈ π(G) and either
G is a p-group or G = PpPq is a Frobenius group with kernel Pp or G/F (G) is
a group of order paqb with cyclic Sylow subgroups, q being a prime of the form
kpa + 1.

In Lemma 2.3, Pq is either cyclic or a generalized quaternion group whenever
G = PpPq is a Frobenius group.

Theorem 2.4. Let G be a non-real group with exactly two conjugacy classes of
the same size. Then every non-real irreducible character of G is linear if and
only if G is isomorphic to A4.

Proof. A4 is obviously a non-real group with exactly two conjugacy classes of
the same size and every non-real irreducible character of it is linear.

Let us suppose conversely that G is a non-real group with exactly two con-
jugacy classes of the same size such that every non-real irreducible character
of G is linear. We shall break the proof into three steps.

Step 1. G is either A4 or G′P2, where G′ is of odd order and P2 is cyclic
of order 4.

Since G has exactly two non-real linear characters, then G/G′ ∼= Z3 or Z4.
Furthermore, x ∈ R if and only if θ(x) = θ(x−1) for each linear character θ if
and only if x2 ∈ G′.

Let λ, λ be the two linear non-real irreducible characters of G. Since if
a ∈ G\R, then a, a−1 are in conjugacy classes of the same size, by assumption
G\R = cl(a)∪ cl(a−1). Moreover, since every λχ must be real for χ ∈ Irr1(G),
thus every nonlinear irreducible character vanishes on G\R. Hence every ele-
ment of G\R is a Camina element and cl(a) = aG′. The previous arguments
yield that either

(2.3) G = cl(a) ∪ cl(a−1) ∪G′ = aG′ ∪ a−1G′ ∪G′,

where R = G′, or

(2.4) G = cl(a) ∪ cl(a−1) ∪ a2G′ ∪G′ = aG′ ∪ a−1G′ ∪ a2G′ ∪G′,

where R = a2G′ ∪G′ for some a ∈ G−R.
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First, assume that (2.3) holds. Hence, G is a Camina group and by Propo-
sition 2.2, G ∼= A4 or D10. We know that D10 is real, then G is isomorphic to
A4.

Suppose, now, that (2.4) holds. Hence, |CG(a)| = |G/G′| = 4 and 〈a〉 ⊆
CG(a). Since a is not a real element, we can deduce o(a) 6= 2 and 〈a〉 = CG(a).
Furthermore, we have that∣∣∣NG(〈a〉)

CG(a)

∣∣∣ = φ(o(a))/2 = 1

and so 〈a〉 = CG(a) = NG(〈a〉). On the other hand, let P2 be a Sylow 2-group
of G containing 〈a〉. We can write that

〈a〉 ⊆ NP2(〈a〉) = NG(〈a〉) ∩ P2 ⊆ NG(〈a〉) = 〈a〉
which follows that 〈a〉 = NP2

(〈a〉) and hence P2 = 〈a〉. Therefore G = G′P2

and |G| = 4|G′|, where |G′| is odd. This implies that G is solvable.
Step 2. If G 6∼= A4, then G′ = PpPq in which p, q ∈ {3, 5, 7} and F (G′) =

Op(G). Moreover, the order of Pq divides q.
Since G is an inverse semi-rational group, by Theorem 2 of [6], π(G′) ⊆

{3, 5, 7, 13}. Moreover, we observe that

(2.5)
NG(〈x〉)
CG(x)

∼= Aut(〈x〉)

for all x ∈ G′ because every generator of 〈x〉 has the same conjugacy class
size, so it must be conjugate. However, G has no element of order 4n, where
n > 1 and so a factor of a subgroup cannot have. Thus, Aut(〈x〉) cannot
have elements of order 4n, n > 1. This implies that G has no elements of order
13, 25, 10, 15, 35, 42, 49. Similarly, as Aut(C21) has C2×C2 as a factor, G cannot
have an element of order 21. Therefore each element of G′ has prime power
order and, by Lemma 2.3, G′ = PpPq in which p, q ∈ {3, 5, 7}, F (G′) = Op(G),
and Pq is cyclic. Moreover, since Pq ⊆ CG(Pq), then by (2.5) the order of Pq

divides q.
Step 3. If G 6∼= A4, then G′ is a p-group.
By Step 2, we know that G′ ∼= PpPq for p, q ∈ {3, 5, 7} and F (G′) = Op(G).

Assume that Pq is of order q. Since |Aut(〈z〉)| = φ(7) = 6 whenever z ∈ Z(P7)
of order 7, then by (2.5) π(G′) 6= {5, 7}. Now, we distinguish three cases for p.

Case (1): p = 5.
Lemma 2.3 implies that G′ = P5P3 is a Frobenius group with kernel P5.

Since φ(o(z)) divides |clG(z)|, the only possibility is o(z) = 5 and |clG(z)| = 12
for every z ∈ Z(P5)\{1}. As Z(P5) is a union of conjugacy classes, there must
be at least two nontrivial among them, their both sizes 12 contradicting the
hypothesis.

Case (2): p = 3.
As q = 5 is not of the form kpa + 1, so Lemma 2.3 implies that G′ = P3P5

a Frobenius group with kernel P3. Following the previous case, we obtain that
o(z) = 3 and |clG(z)| = 10 or 20 for every z ∈ Z(P3) \ {1}. As 10 + 1, 20 + 1
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and 20 + 10 + 1 are not powers of 3, Z(P3) is a union of at least two conjugacy
classes of the same size, contradicting the hypothesis.

So consider q = 7 and G′ = P3P7. Apply (2.5) for the generator x of P7 to
see that P7 ≤ CG′(x) < NG′(P7) so G′ is not a Frobenius group. By Lemma
2.3, G′/O3(G′) is of order 21. As G′ does not contain elements of order 21,
CG′(x) = P7 so Z(O3(G′))P7 is a Frobenius group with complement P7. As
above, o(z) = 3 and |clG(z)| = 14, 28, 42 or 84 for every z ∈ Z(O3(G′)) \ {1},
all divisible by 14. So |Z(O3(G′))| is a power of 3 congruent to 1 modulo 7
so at least 36. But 1 + 14 + 28 + 42 + 84 = 169 < 36 so there must be two
conjugacy classes of the same size, contradicting the hypothesis.

Case (3): p = 7.
Hence G′ = P7P3 is a Frobenius group where P3 = 〈x〉 and we conclude

from the class equation and the hypothesis

(2.6)

3.7n = |G′| = |clG(x)|+
∑
b∈A

|clG(b)|+
∑
b∈B

|clG(b)|

< 2.7n + 2.3 · (1 + · · ·+ 7n−2) + 4.3 · (1 + · · ·+ 7n−2)

= 2.7n + 2.3 · 7n−1 − 1

7− 1
+ 4.3 · 7n−1 − 1

7− 1

= 2.7n + 3.7n−1 − 3 = 17.7n−1 − 3 < 3.7n − 3

in which A = {b ∈ P7 | b commutes with an involution} and B = P7 \ A. This
is impossible.

By these cases, we deduce that Pq is trivial and G is a p-group.
Step 4. The alternating group A4 is the unique group satisfying the hy-

pothesis.
If G′ is a p-group, by the class equation we have

(2.7)

pn = |G′| < 4(1 + · · ·+ pn−2) + 2(1 + · · ·+ pn−2)

= 6 · p
n−1 − 1

p− 1

which is impossible for p = 3, 5, 7, as desired. �

A group G is said to be a D1-group if |cd1(G)| = |Irr1(G)| − 1, in other
words, a D1-group G is a finite group with exactly two non-linear irreducible
characters of the same degree.

In the following theorem, let (A,B) be a Frobenius group with kernel B and
complement A and ccl(G) denote the set of numbers which occur as the lengths
of conjugacy classes of G.

Theorem 2.5 (Theorem 7 of [1]). Suppose that G is a solvable D1-group. Then
one of the following assertions is true:

(a) G is an extraspecial group of order p1+2m,
(b) G is a 2-group with |G′| = 2 and |Z(G)| = 4,
(c) G is a 2-group with |G′| = 4 and |Z(G)| = 2,
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(d) G = (C(pm−1)/2, E(pm)), where E(pm) is the elementary abelian group
of order pm,

(e) G = (Cpm−1, E(pm)))× C(2),
(f) G = (C2m−1, G

′) ∼= M(2m), the normalizer of a Sylow 2-subgroup of
the Suzuki simple group Sz(2m), m > 1,

(g) G = (C2m−1, G
′), where G/Z(G′) ∼= M(2m), m > 1,

(h) G is a group with cd1(G) = {pn − 1} which G/Z(G) is a Frobenius
group,

(i) G = S4.

Proposition 2.6. Let G be a D1-group with exactly two non-central conjugacy
classes of the same size. Then G is isomorphic to S4, A5, D10, or PSL(2, 7).

Proof. Consider that G is a solvable group then G satisfies Theorem 2.5. By
Proposition 2.2, since D10 and A4 are the only Frobenius groups with solvable
complement having two non-central conjugacy classes of the same size, then G
is one of Cases (d), (e), (f), and (g) of Theorem 2.5 satisfying our hypotheses
if and only if G ∼= D10.

If G is one of Cases (a), (b), and (c) of Theorem 2.5, then G is a p-group and
so by the proof of Proposition 2.2, such groups do not satisfy the hypotheses.

Assume that G is a group with cd1(G) = {pn − 1} for which G/Z(G) is
a Frobenius group. Then, by Theorem 1 and Corollary 2 of [4], ccl(G) =
{1, pn − 1, pn} with corresponding frequencies {2, 2, 2(pn − 2)} for some odd
prime number p and n ∈ N which contradicts our hypotheses.

Additionally, we can easily check that S4 satisfies the hypotheses.
Now, consider that G is a non-solvable group, by Main Theorem of [2], G

is either A5 or PSL(2, 7). By the character tables in Appendix of [13], these
groups satisfy the our hypotheses. �
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