COMPOSITION OF POLYNOMIALS OVER A FIELD

  • Choi, EunMi (Department of Mathematics Hannam University)
  • Received : 2009.06.03
  • Accepted : 2009.08.14
  • Published : 2009.09.30

Abstract

This work studies about the composition polynomial f(g(x)) that preserves certain properties of f(x) and g(x). We shall investigate necessary and sufficient conditions of f(x) and g(x) to be f(g(x)) is separable, solvable by radical or split completely. And we find relationship of Galois groups of f(g(x)), f(x) and of g(x).

Keywords

References

  1. J. E. Cremona, On the Galois groups of the iterates of $x^{2}\;+\;1$, Mathematika, 36 (1989) 259-261 https://doi.org/10.1112/S0025579300013127
  2. B. Fein, M. Schacker, Properties of iterates and composites of polynomials, J. London Math. Soc. 54 (1996), 489-497 https://doi.org/10.1112/jlms/54.3.489
  3. M. Fried, M. Jarden, Field Arithmetic, Springer-Verlag, Berlin Heidelberg, 1986
  4. S. Lang, Algebra, third edition, Addison-Wesley, Reading, 1993
  5. R. W. K. Odoni, On the prime divisors of the sequence $w_{n+1}\;=\;1\;+\;w_1...w_n$, J. London Math. Soc. 32 (1985), no. 2, 1-11 https://doi.org/10.1112/jlms/s2-32.1.1
  6. R. W. K. Odoni, The Galois theory of iterates and composites of polynomials, Proc. London Math. Soc. 51 (1985), 385-414 https://doi.org/10.1112/plms/s3-51.3.385
  7. R. W. K. Odoni, Realising wreath products of cyclic groups as Galois groups, Mathematika, 35 (1988), 101-113 https://doi.org/10.1112/S002557930000632X
  8. T. Tsuzuku, Finite groups and finite geometries, Cambridge University Press, Cambridge, London, 1982