• Title/Summary/Keyword: Solution-precipitation Process

Search Result 240, Processing Time 0.037 seconds

Synthesis of Fe/SiO2 Core-Shell Nanoparticles by a Reverse Micelle and Sol-Gel Processes

  • Son, Jeong-Hun;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.298-302
    • /
    • 2012
  • Fe/$SiO_2$ core-shell type composite nanoparticles have been synthesized using a reverse micelle process combined with metal alkoxide hydrolysis and condensation. Nano-sized $SiO_2$ composite particles with a core-shell structure were prepared by arrested precipitation of Fe clusters in reverse micelles, followed by hydrolysis and condensation of organometallic precursors in micro-emulsion matrices. Microstructural and chemical analyses of Fe/$SiO_2$ core-shell type composite nanoparticles were carried out by TEM and EDS. The size of the particles and the thickness of the coating could be controlled by manipulating the relative rates of the hydrolysis and condensation reaction of TEOS within the micro-emulsion. The water/surfactant molar ratio influenced the Fe particle distribution of the core-shell composite particles, and the distribution of Fe particles was broadened as R increased. The particle size of Fe increased linearly with increasing $FeNO_3$ solution concentration. The average size of the cluster was found to depend on the micelle size, the nature of the solvent, and the concentration of the reagent. The average size of synthesized Fe/$SiO_2$ core-shell type composite nanoparticles was in a range of 10-30 nm and Fe particles were 1.5-7 nm in size. The effects of synthesis parameters, such as the molar ratio of water to TEOS and the molar ratio of water to surfactant, are discussed.

Synthesis and Characterization of Y2O3 Powders by a Modified Solvothermal Process

  • Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.78-81
    • /
    • 2012
  • $Y_2O_3$ nanomaterials have been widely used in transparent ceramics and luminescent devices. Recently, many studies have focused on controlling the size and morphology of $Y_2O_3$ in order to obtain better material performance. $Y_2O_3$ powders were prepared under a modified solvothermal condition involving precipitation from metal nitrates with aqueous ammonium hydroxide. The powders were obtained at temperatures at $250^{\circ}C$ after a 6h process. The properties of the $Y_2O_3$ powders were studied as a function of the solvent ratio. The synthesis of $Y_2O_3$ crystalline particles is possible under a modified solvothermal condition in a water/ethylene glycol solution. Solvothermal processing condition parameters including the pH, reaction temperature and solvent ratio, have significant effects on the formation, phase component, morphology and particle size of yttria powders. Ethylene glycol is a versatile, widely used, inexpensive, and safe capping organic molecule for uniform nanoparticles besides as a solvent. The characterization of the synthesized Y2O3 powders were studied by XRD, SEM (FE-SEM) and TG/DSC. An X-ray diffraction analysis of the synthesized powders indicated the formation of the $Y_2O_3$ cubic structure upon calcination. The average crystalline sizes and distribution of the synthesized $Y_2O_3$ powders was less than 2 um and broad, respectively. The synthesized particles were spherical and hexagonal in shape. The morphology of the synthesized powders changed with the water and ethylene glycol ratio. The average size and shape of the synthesized particles could be controlled by adjusting the solvent ratio.

PPTA/PVDF blend membrane integrated process for treatment of spunlace nonwoven wastewater

  • Li, Hongbin;Shi, Wenying;Qin, Longwei;Zhu, Hongying;Du, Qiyun;Su, Yuheng;Zhang, Haixia;Qin, Xiaohong
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.311-321
    • /
    • 2017
  • Hydrophilic and high modulus PPTA molecules were incorporated into PVDF matrix via the in situ polymerization of PPD and TPC in PVDF solution. PPTA/PVDF/NWF blend membrane was prepared through the immersion precipitation phase inversion method and nonwoven coating technique. The membrane integrated technology including PPTA/PVDF/NWF blend membrane and reverse osmosis (RO) membrane was employed to treat the polyester/viscose spunlace nonwoven process wastewater. During the consecutive running of six months, the effects of membrane integrated technology on the COD, ammonia nitrogen, suspended substance and pH value of water were studied. The results showed that the removal rate of COD, ammonia nitrogen and suspended substance filtered by PPTA/PVDF blend membrane was kept above 90%. The pH value of the permeate water was about 7.1 and the relative water flux of blend membrane remained above 90%. After the deep treatment of RO membrane, the permeate water quality can meet the water circulation requirement of spunlace process.

Synthesis and Physicochemical Characterization of Biodegradable PLGA-based Magnetic Nanoparticles Containing Amoxicilin

  • Alimohammadi, Somayeh;Salehi, Roya;Amini, Niloofar;Davaran, Soodabeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3225-3232
    • /
    • 2012
  • The purposes of this research were to synthesize amoxicillin-carrying magnetic nanoparticles. Magnetic nanoparticles were prepared by a chemical precipitation of ferric and ferrous chloride salts in the presence of a strong basic solution. PLGA and PLGA-PEG copolymers were prepared by ring opening polymerization of lactide (LA) and glycolide (GA) (mole ratio of LA: GA 3:1) with or without polyethylene glycol (PEG). Amoxicillin loaded magnetic PLGA and PLGA-PEG nanoparticles were prepared by an emulsion-evaporation process (o/w). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) photomicrographs showed that the magnetic nanoparticles have the mean diameter within the range of 65-260 nm also they were almost spherical in shape. Magnetic nanoparticles prepared with PLGA showed more efficient entrapment (90%) as compared with PLGA-PEG (48-52%) nanoparticles. In-vitro release of amoxicillin from magnetic PLGA nanoparticles showed that 78% of drug was released over 24 hours. The amount of amoxicillin released from PLGA-PEG s was higher than PLGA.

Modified Sol-Gel Processing for Titanium Disulfide (졸겔법을 응용한 이황화티탄늄의 합성에 관한 연구)

  • Go, Yong Bok;Bae, Young Je;Chae, Hee K.
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.3
    • /
    • pp.130-137
    • /
    • 1997
  • Powders and thin-layers of a hexagonal titanium disulfide phase have been successfully prepared by modifying the sol-gel process. The reaction of titanium isopropoxide with hydrogen sulfide causes the precipitation of a precursor which was converted to the disulfide on heat-treatment in $H_2S$ at various temperatures depending on the solvent adopted, whereas that of titanium 2-methoxyethoxide with $H_2S$ produces a stable solution which was spin-casted onto silicon substrates followed by thermolysis to give thin films. Upon heat-treatment in $H_2S$, the disulfides show interesting morphological variations in the form of their powders and thin films, which were characterized by SEM and X-ray diffractometer.

  • PDF

Microstructural Characterization of Hot Extruded Al-Zn-Mg-Cu Alloys Containing Sc (Sc을 첨가한 Al-Zn-Mg-Cu 합금 압출재의 열처리에 따른 미세구조 변화)

  • 이혜경;서동우;이상용;이경환;임수근
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.53-58
    • /
    • 2004
  • The microstructural changes of Al-Zn-Mg-Cu alloy containing Sc during hot extrusion and post heat treatment were investigated. Two kinds of Al-Sc alloys with different alloying elements (B1, B2) were hot extruded to make T-shape bars at extrusion temperature of $380^{\circ}C$, then the bars were solution treated at $480^{\circ}C$ for 2hrs followed by artificial aging at $120^{\circ}C$ for 24hrs. The interior microstructure of as extruded bar consisted of elongated grains, however, fine equiaxed grains were also observed around surface. The microstructural gradient suggested that different restoration process could proceed during the hot extrusion. For B1 and B2, different grain growth behaviors were found around the surface during the post heat treatment. Rapid grain growth behavior was observed for B1 around the surface, however, it was not observed for B2. Orientation pinning, which was related with the evolution of preferred orientation, and precipitation were thought to be responsible for the rapid grain growth.

Etchless Fabrication of Cu Circuits Using Wettability Modification and Electroless Plating (젖음성 차이와 무전해도금을 이용한 연성 구리 회로패턴 형성)

  • Park, Sang-Jin;Ko, Tae-Jun;Yoon, Juil;Moon, Myoung-Woon;Han, Jun Hyun
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.622-629
    • /
    • 2015
  • Cu circuits were successfully fabricated on flexible PET(polyethylene terephthalate) substrates using wettability difference and electroless plating without an etching process. The wettability of Cu plating solution on PET was controlled by oxygen plasma treatment and $SiO_x$-DLC(silicon oxide containing diamond like carbon) coating by HMDSO(hexamethyldisiloxane) plasma. With an increase of the height of the nanostructures on the PET surface with the oxygen plasma treatment time, the wettability difference between the hydrophilicity and hydrophobicity increased, which allowed the etchless formation of a Cu pattern with high peel strength by selective Cu plating. When the height of the nanostructure was more than 1400 nm (60 min oxygen plasma treatment), the reduction of the critical impalement pressure with the decreasing density of the nanostructure caused the precipitation of copper in the hydrophobic region.

A Simplified Procedure for the Large-Scale Purification of Urokinase from Human Urine (인뇨로부터 유로키나제 대량정제공정의 단순화)

  • 정광회;선우명
    • KSBB Journal
    • /
    • v.5 no.2
    • /
    • pp.183-189
    • /
    • 1990
  • An efficient method has been developed for the purification of urokinase from 1, 000 liter batches of human urine. The procedure involved precipitation of urokinase with 2mM zinc chloride, resuspension of the precipitate with 0.1M EDTA/0.5M Glycine solution, and CM-Toyopearl and benzamidine-Sepharose column chromatography. The purified urokinase was fully active and possessed a specific activity of 1.07$\times$105IU/mg. The recoveries ranged from 42 to 65% in several preparations(mean value was 51%). And the urokinase purified by this process consisted of about 13% of single chain urokinase (pro-urokinase) as evaluated by SDS-polyacrylamide gel electrophoresis in reducing condition and by S-2444 amldolytic activity under plasmin treatment.

  • PDF

Synthesis of Ba(Mg1/3Ta2/3)O3 Nanoparticles by a Hydrothermal Process (수열합성법에 의한 Ba(Mg1/3Ta2/3)O3 나노분말 합성)

  • Kim, Rak-Hee;Son, Jung-Hun;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.16 no.6
    • /
    • pp.373-376
    • /
    • 2006
  • [ $Ba(Mg_{1/3}Ta_{2/3})O_3$ ] nanoparticles were synthesized in water solution under mild temperature and pressure conditions by precipitation from $Ba(NO_3),\;Mg(NO_3)_2{\cdot}6H_2O\;and\;TaCl_5$ with aqueous potassium hydroxide. The average size and distribution of the synthesized $Ba(Mg_{1/3}Ta_{2/3})O_3$ nanoparticles were below 100 nm and broad, respectively. The phase of synthesized particles was crystalline reacted at $170^{\circ}C$ for 4 h. The characterization of $Ba(Mg_{1/3}Ta_{2/3})O_3$ nanoparticles were studied using XRD, SEM, and TEM.

The Effect of Chitosan on Hydroxyapatite Precipitation

  • Hatim, Zineb;Bakasse, Mina;Kheribech, Abdelmoula;Abida, Fatima;Bourouisse, Abderrahim
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.484-485
    • /
    • 2006
  • The process of coprecipitation of biocomposite hydroxyapatite/chitosan from aqueous solution at low temperature in alkali environnement was examined. We have shown that initially we have the formation of amorphous octocalcium phosphates $(Ca_8(HPO_4)(PO_4)_5,\;nH_2O:\;OCP)$ and the transferring from OCP to amorphous calcium phosphate $(Ca_9(PO_4)_3,\;nH_2O:\;TCP)$, and then from TCP to calcium-deficient hydroxyapatite $(Ca_{10-X}\;(HPO_4)_X(PO_4)_{6-x}(OH)_{2-X}\;:\;ACP)$ and hydroxyapatite $(Ca_{10}(PO_4)_6(OH)_2\;:\;HAP)$. The transformation of ACP to HAP was inhibited in the presence of chitosan. The result suggests that there is an affinity binding between ACP and chitosan and subsequently blocking the active growth site of ACP.

  • PDF