• Title/Summary/Keyword: Solution of Polynomial

Search Result 327, Processing Time 0.024 seconds

Out-of-plane elastic buckling of truss beams

  • Fedoroff, Alexis;Kouhia, Reijo
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.613-629
    • /
    • 2013
  • In this article we will present a method to directly evaluate the critical point of a non-linear system by using the solution of a polynomial eigenvalue approximation as a starting point for an iterative non-linear system solver. This method will be used to evaluate out-of-plane buckling properties of truss structures for which the lateral displacement of the upper chord has been prevented. The aim is to assess for a number of example structures whether or not the linearized eigenvalue solution gives a relevant starting point for an iterative non-linear system solver in order to find the minimum positive critical load.

Eulerian-Lagrangian Hybrid Numerical Method for the Longitudinal Dispersion Equation

  • Jun, Kyung-Soo;Lee, Kil-Seong
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.85-97
    • /
    • 1994
  • A hybrid finite difference method for the longitudinal dispersion equation, which is based on combining the Holly-Preissmann scheme with fifth-degree Hermite interpolating polynomial and the generalized Crank-Nicholson scheme, is described and comparatively evaluated with other characteristics-based numerical methods. Longitudinal dispersion of an instantaneously-loaded pollutant source is simulated, and computational results are compared with the exact solution. The present method is free from wiggles regardless of the Courant number, and exactly reproduces the location of the peak concentration. Overall accuracy of the computation increases for smaller value of the weighting factor, $\theta$of the model. Larger values of $\theta$ overestimates the peak concentration. Smaller Courant number yields better accuracy, in general, but the sensitivity is very low, especially when the value of $\theta$ is small. From comparisons with the hybrid method using cubic interpolating polynomial and with splitoperator methods, the present method shows the best performance in reproducing the exact solution as the advection becomes more dominant.

  • PDF

The Random Type Quadratic Assignment Problem Algorithm

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.81-88
    • /
    • 2016
  • The optimal solution of quadratic assignment problem (QAP) cannot get done in polynomial time. This problem is called by NP-complete problem. Therefore the meta-heuristic techniques are applied to this problem to get the approximated solution within polynomial time. This paper proposes an algorithm for a random type QAP, in which the instance of two nodes are arbitrary. The proposed algorithm employs what is coined as a max flow-min distance rule by which the maximum flow node is assigned to the minimum distance node. When applied to the random type QAP, the proposed algorithm has been found to obtain optimal solutions superior to those of the genetic algorithm.

Nodal method for handling irregularly deformed geometries in hexagonal lattice cores

  • Seongchan Kim;Han Gyu Joo;Hyun Chul Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.772-784
    • /
    • 2024
  • The hexagonal nodal code RENUS has been enhanced to handle irregularly deformed hexagonal assemblies. The underlying RENUS methods involving triangle-based polynomial expansion nodal (T-PEN) and corner point balance (CPB) were extended in a way to use line and surface integrals of polynomials in a deformed hexagonal geometry. The nodal calculation is accelerated by the coarse mesh finite difference (CMFD) formulation extended to unstructured geometry. The accuracy of the unstructured nodal solution was evaluated for a group of 2D SFR core problems in which the assembly corner points are arbitrarily displaced. The RENUS results for the change in nuclear characteristics resulting from fuel deformation were compared with those of the reference McCARD Monte Carlo code. It turned out that the two solutions agree within 18 pcm in reactivity change and 0.46% in assembly power distribution change. These results demonstrate that the proposed unstructured nodal method can accurately model heterogeneous thermal expansion in hexagonal fueled cores.

The Min-Distance Max-Quantity Assignment Algorithm for Random Type Quadratic Assignment Problem (랜덤형 2차원 할당문제의 최소 거리-최대 물동량 배정 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.201-207
    • /
    • 2018
  • There is no known polynomial time algorithm for random-type quadratic assignment problem(RQAP) that is a NP-complete problem. Therefore the heuristic or meta-heuristic approach are solve the approximated solution for the RQAP within polynomial time. This paper suggests polynomial time algorithm for random type quadratic assignment problem (QAP) with time complexity of $O(n^2)$. The proposed algorithm applies one-to-one matching strategy between ascending order of sum of distance for each location and descending order of sum of quantity for each facility. Then, swap the facilities for reflect the correlation of distances of locations and quantities of facilities. For the experimental data, this algorithm, in spite of $O(n^2)$ polynomial time algorithm, can be improve the solution than genetic algorithm a kind of metaheuristic method.

Swap-Insert Algorithm for Driver Scheduling Problem (운전기사 일정계획 문제의 교환-삽입 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.175-181
    • /
    • 2014
  • This paper suggests O(m) polynomial time heuristic algorithm to obtain the solution for the driver scheduling problem, DSP, that has been classified as NP-complete problem. The proposed algorithm gets the initial assignment of n minimum number of drivers from given m schedules. Nextly, this algorithm gets the minimum total time (TC) using 5 rules of swap and insert for decrease of over times (OT) and idle times (IT). Although this algorithm is a heuristic polynomial time algorithm with O(m) time complexity rules to be find a optimal (or approximate) solution, this algorithm is equal to metaheuristic methods for the 5 experimental data. To conclude, this paper shows the DSP is not NP-complete problem but Polynomial time (P)-problem with polynomial time rules.

A PARTICULAR SOLUTION OF THE EINSTEIN'S EQUATION IN EVEN-DIMENSIONAL UFT Xn

  • Lee, Jong Woo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.185-195
    • /
    • 2010
  • In the unified field theory(UFT), in order to find a solution of the Einstein's equation it is necessary and sufficient to study the torsion tensor. The main goal in the present paper is to obtain, using a given torsion tensor (3.1), the complete representation of a particular solution of the Einstein's equation in terms of the basic tensor $g_{{\lambda}{\nu}}$ in even-dimensional UFT $X_n$.

FRACTIONAL POLYNOMIAL METHOD FOR SOLVING FRACTIONAL ORDER POPULATION GROWTH MODEL

  • Krishnarajulu, Krishnaveni;Krithivasan, Kannan;Sevugan, Raja Balachandar
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.869-878
    • /
    • 2016
  • This paper presents an ecient fractional shifted Legendre polynomial method to solve the fractional Volterra's model for population growth model. The fractional derivatives are described based on the Caputo sense by using Riemann-Liouville fractional integral operator. The theoretical analysis, such as convergence analysis and error bound for the proposed technique has been demonstrated. In applications, the reliability of the technique is demonstrated by the error function based on the accuracy of the approximate solution. The numerical applications have provided the eciency of the method with dierent coecients of the population growth model. Finally, the obtained results reveal that the proposed technique is very convenient and quite accurate to such considered problems.

A Study of stability for solution′s convergence in Karmarkar's & Primal-Dual Interior Algorithm (Karmarkar's & Primal-Dual 내부점 알고리즘의 해의 수렴과정의 안정성에 관한 고찰)

  • 박재현
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.45
    • /
    • pp.93-100
    • /
    • 1998
  • The researches of Linear Programming are Khachiyan Method, which uses Ellipsoid Method, and Karmarkar, Affine, Path-Following and Interior Point Method which have Polynomial-Time complexity. In this study, Karmarkar Method is more quickly solved as 50 times then Simplex Method for optimal solution. but some special problem is not solved by Karmarkar Method. As a result, the algorithm by APL Language is proved time efficiency and optimal solution in the Primal-Dual interior point algorithm. Furthermore Karmarkar Method and Primal-Dual interior point Method is compared in some examples.

  • PDF

Comparison of Interpolation Methods for Reconstructing Pin-wise Power Distribution in Hexagonal Geometry

  • Lee, Hyung-Seok;Yang, Won-Sik
    • Nuclear Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.303-313
    • /
    • 1999
  • Various interpolation methods have been compared for reconstruction of LMR pin power distributions in hexagonal geometry. Interpolation functions are derived for several combinations of nodal quantities and various sets of basis functions, and tested against fine mesh calculations. The test results indicate that the interpolation functions based on the sixth degree polynomial are quite accurate, yielding maximum interpolation errors in power densities less than 0.5%, and maximum reconstruction errors less than 2% for driver assemblies and less than 4% for blanket assemblies. The main contribution to the total reconstruction error is made tv the nodal solution errors and the comer point flux errors. For the polynomial interpolations, the basis monomial set needs to be selected such that the highest powers of x and y are as close as possible. It is also found that polynomials higher than the seventh degree are not adequate because of the oscillatory behavior.

  • PDF