A PARTICULAR SOLUTION OF THE EINSTEIN'S EQUATION IN EVEN-DIMENSIONAL UFT X_n

Jong Woo LEE*

ABSTRACT. In the unified field theory(UFT), in order to find a solution of the Einstein's equation it is necessary and sufficient to study the torsion tensor. The main goal in the present paper is to obtain, using a given torsion tensor (3.1), the complete representation of a particular solution of the Einstein's equation in terms of the basic tensor $g_{\lambda\nu}$ in even-dimensional UFT X_n .

1. Introduction

Einstein ([1], 1950) proposed a new unified field theory that would include both gravitation and electromagnetism. Characterizing Einstein's unified field theory as a set of geometrical postulates in a 4-dimensional generalized Riemannian space X_4 (i.e., space-time), Hlavatý ([9], 1957) gave the mathematical foundation of the 4-dimensional unified field theory(UFT X_4) defined by the unified field tensor $g_{\lambda\nu}$ for the first time. Generalizing X_4 to the n-dimensional generalized Riemannian manifold X_n , n-dimensional generalization of this theory, the so-called Einstein's n-dimensional unified field theory (UFT X_n), had been obtained by Mishra ([8], 1958). Since then many consequences of this theory has been obtained by a number of mathematicians. However, it has been unable yet to represent a general n-dimensional Einstein's connection in a surveyable tensorial form. The purpose of the present paper is to obtain a necessary and sufficient condition for the existence of a particular solution of Einstein's equation in even-dimensional UFT X_n . Next, under this condition, we shall obtain a precise tensorial representation of this solution in terms of the basic tensor $g_{\lambda\nu}$. The obtained results and

Received November 17, 2009; Accepted April 23, 2010.

 $^{2010 \ {\}rm Mathematics \ Subject \ Classification: \ Primary \ 53A45, \ 53B50, \ 53C25.}$

Key words and phrases: basic vector, basic scalar, basic polynomial, Einstein's equation, unified field tensor, torsion tensor, UFT.

discussions in the present paper will be useful for the even-dimensional considerations of the unified field theory.

2. Preliminary

This section is a brief collection of basic concepts, notations, and results, which are needed in our further considerations in the present paper.

Let X_n be an n-dimensional generalized Riemannian manifold covered by a system of real coordinate neighborhoods $\{U; x^{\nu}\}$, where, here and in the sequel, Greek indices run over the range $\{1, 2, \dots, n\}$ and follow the summation convention. In the Einstein's usual n-dimensional unified field theory(UFT X_n), the algebraic structure on X_n is imposed by a basic real non-symmetric tensor $g_{\lambda\mu}$, which may be split into its symmetric part $h_{\lambda\mu}$ and skew-symmetric part $k_{\lambda\mu}$:

$$(2.1) g_{\lambda\mu} = h_{\lambda\mu} + k_{\lambda\mu},$$

where we assume that

(2.2)
$$G = det(g_{\lambda \mu}) \neq 0, \quad H = det(h_{\lambda \mu}) \neq 0.$$

Since $det(h_{\lambda\mu}) \neq 0$, we may define a unique tensor $h^{\lambda\nu}(=h^{\nu\lambda})$ by

$$h_{\lambda\mu}h^{\lambda\nu} = \delta^{\nu}_{\mu}.$$

We use the tensors $h^{\lambda\nu}$ and $h_{\lambda\mu}$ as tensors for raising and/or lowering indices for all tensors defined in UFT X_n in the usual manner. Then we may define new tensors by

(2.4)
$$k^{\alpha}{}_{\mu} = k_{\lambda\mu}h^{\lambda\alpha}, \quad k_{\lambda}{}^{\alpha} = k_{\lambda\mu}h^{\mu\alpha}.$$

In UFT X_n , the differential geometric structure is imposed by the tensor $g_{\lambda\mu}$ by means of a connection $\Gamma^{\nu}_{\lambda\mu}$ defined by the Einstein's equation:

(2.5a)
$$\partial_{\omega} g_{\lambda\mu} - g_{\alpha\mu} \Gamma^{\alpha}_{\lambda\omega} - g_{\lambda\alpha} \Gamma^{\alpha}_{\omega\mu} = 0 \quad (\partial_{\nu} = \frac{\partial}{\partial x^{\nu}}),$$

or equivalently

(2.5b)
$$D_{\omega}g_{\lambda\mu} = 2S_{\omega\mu}{}^{\alpha}g_{\lambda\alpha},$$

where D_{ω} denotes the symbolic vector of the covariant derivative with respect to $\Gamma^{\nu}_{\lambda\mu}$, and $S_{\lambda\mu}{}^{\nu}$ is the torsion tensor of $\Gamma^{\nu}_{\lambda\mu}$.

In UFT X_n , the following quantities are frequently used, where $p=1,\,2,\,3,\,\dots$:

$$(2.6) \qquad (a) \quad g = \frac{G}{H}, \quad k = \frac{T}{H},$$

$$(b) \quad K_0 = 1, \quad K_p = k_{[\alpha_1}{}^{\alpha_1} k_{\alpha_2}{}^{\alpha_2} \dots k_{\alpha_p]}{}^{\alpha_p},$$

$$(c) \quad {}^{(0)}k_{\lambda}{}^{\nu} = \delta^{\nu}_{\lambda}, \quad {}^{(p)}k_{\lambda}{}^{\nu} = k_{\lambda}{}^{\alpha} (p-1)k_{\alpha}{}^{\nu} = {}^{(p-1)}k_{\lambda}{}^{\alpha} k_{\alpha}{}^{\nu},$$

$$(d) \quad \phi = {}^{(2)}k_{\alpha}{}^{\alpha}.$$

It should be remarked that the tensor $^{(p)}k_{\lambda\nu}$ is symmetric if p is even, and skew-symmetric if p is odd.

An eigenvector Z^{μ} of $k_{\lambda\mu}$ which satisfies

$$(2.7) (Mh_{\lambda\mu} + k_{\lambda\mu})Z^{\mu} = 0,$$

where M is an arbitrary scalar, is called a basic vector of UFT X_n , and corresponding eigenvalue of $k_{\lambda\mu}$ basic scalar of UFT X_n . Furthermore the characteristic polynomial corresponding to $k_{\lambda\mu}$, that is,

(2.8)
$$D(M) = Det(Mh_{\lambda\mu} + k_{\lambda\mu}),$$

will be termed basic polynomial of UFT X_n

Remark 2.1. From now on, we shall assume that

$$(2.9) T = det(k_{\lambda \mu}) \neq 0.$$

Hence there exists a unique skew-symmetric tensor $\overline{k}^{\lambda\mu}$ in X_n satisfying

$$(2.10) k_{\lambda\mu} \, \overline{k}^{\lambda\nu} = \delta^{\nu}_{\mu}.$$

Since $k_{\lambda\mu}$ is skew-symmetric, and $T \neq 0$, the dimension of X_n is even. That is, n is even. Hence all our further considerations in the present paper are dealt in even-dimensional UFT X_n .

It has been shown by Chung[4, 5, 6] that the following relations hold in UFT X_n .

(2.11)
$$(a) \quad K_n = k, \quad K_p = 0 \ (p \ is \ odd),$$

$$(b) \quad g = \sum_{s=0}^{n} K_s,$$

$$(c) \quad \sum_{s=0}^{n} K_s^{(n-s)} k_{\lambda}^{\nu} = 0.$$

Here and in what follows, the index s is assumed to take the values 0, 2, 4, ..., n in the specified range.

It has been shown by Chung[5] that in UFT X_n , the basic polynomial (2.8) may be given by

(2.12)
$$D(M) = H(M^{n} + M^{n-2}K_{2} + \dots + M^{2}K_{m-2} + k)$$
$$= H \sum_{p=0}^{n} M^{n-p}K_{p},$$

and hence M is a basic scalar in UFT X_n if and only if M satisfies

(2.13)
$$\sum_{p=0}^{n} M^{n-p} K_p = 0.$$

It has been shown by Lee[2] that in UFT X_n , the representation of the tensor $\overline{k}^{\lambda\mu}$, given by (2.10), may be given by

(2.14)
$$\overline{k}^{\lambda\mu} = \frac{1}{k} \sum_{s=0}^{n-2} K_s \,^{(n-s-1)} k^{\lambda\mu}.$$

3. A particular solution of the Einstein's equation

In this section, when a connection $\Gamma^{\nu}_{\lambda\mu}$ of the form

$$(3.1) S_{\lambda\mu}{}^{\nu} = k_{\lambda\mu}Y^{\nu},$$

for some nonzero vector Y^{ν} , is a solution of the Einstein's equation (2.5) in UFT X_n , we find its complete representation.

LEMMA 3.1. When a connection $\Gamma^{\nu}_{\lambda\mu}$ of the form (3.1) is a solution of the Einstein's equation (2.5), (2.5) is equivalent to the following system of equations:

(3.2)
$$(a) \quad D_{\omega}h_{\lambda\mu} = 2 k_{\omega(\mu}Y_{\lambda)} + 2 k_{\omega(\mu}k_{\lambda)\alpha}Y^{\alpha},$$

$$(b) \quad D_{\omega}k_{\lambda\mu} = 2 k_{\omega[\mu}Y_{\lambda]} + 2 k_{\omega[\mu}k_{\lambda]\alpha}Y^{\alpha},$$

Proof. Substituting (2.1) and (3.1) into (2.5b), we obtain

$$(3.3) D_{\omega}g_{\lambda\mu} = 2 k_{\omega\mu}Y_{\lambda} + 2 k_{\omega\mu}k_{\lambda\alpha}Y^{\alpha}.$$

The equations (3.2)(a) and (3.2)(b) follow from (3.3) and from

$$D_{\omega}h_{\lambda\mu} = D_{\omega}g_{(\lambda\mu)}, \qquad D_{\omega}k_{\lambda\mu} = D_{\omega}g_{[\lambda\mu]}.$$

Conversely, taking the sum of (3.2)(a) and (3.2)(b), we obtain (3.3).

THEOREM 3.2. When a connection $\Gamma^{\nu}_{\lambda\mu}$ of the form (3.1) is a solution of the Einstein's equation (2.5), (2.5) is equivalent to the following system of equations:

(3.4)
$$\Gamma^{\nu}_{\lambda\mu} = \{ {}_{\lambda}{}^{\nu}{}_{\mu} \} - 2k_{(\lambda}{}^{\nu}k_{\mu)\alpha}Y^{\alpha} + k_{\lambda\mu}Y^{\nu},$$

(3.5)
$$\nabla_{\nu} k_{\lambda\mu} = -2k_{\nu[\lambda} Y_{\mu]} + 2^{(2)} k_{\nu[\lambda} k_{\mu]\alpha} Y^{\alpha},$$

where ∇_{ω} is the symbolic vector of the covariant derivative with respect to the Christoffel symbols $\{\lambda^{\nu}_{\mu}\}$ defined by $h_{\lambda\mu}$.

Proof. From lemma 3.1, when a connection $\Gamma^{\nu}_{\lambda\mu}$ of the form (3.1) is a solution of the Einstein's equation (2.5), (2.5) is equivalent to the system of equations (3.2)(a) and (b). In virtue of relation

$$(3.6) D_{\omega}h_{\lambda\mu} = \partial_{\omega}h_{\lambda\mu} - h_{\alpha\mu}\Gamma^{\alpha}_{\lambda\omega} - h_{\lambda\alpha}\Gamma^{\alpha}_{\mu\omega},$$

and (3.1), we obtain

(3.7)
$$\frac{1}{2}h^{\nu\alpha}(D_{\lambda}h_{\alpha\mu} + D_{\mu}h_{\alpha\lambda} - D_{\alpha}h_{\lambda\mu}) \\
= \{_{\lambda}^{\nu}{}_{\mu}\} - 2S^{\nu}{}_{(\lambda\mu)} + S_{\lambda\mu}{}^{\nu} - \Gamma^{\nu}{}_{\lambda\mu} \\
= \{_{\lambda}^{\nu}{}_{\mu}\} - 2k^{\nu}{}_{(\lambda}Y_{\mu)} + k_{\lambda\mu}Y^{\nu} - \Gamma^{\nu}{}_{\lambda\mu}.$$

On the other hand, it follows from (3.2)(a) that

(3.8)
$$\frac{1}{2}h^{\nu\alpha}(D_{\lambda}h_{\alpha\mu} + D_{\mu}h_{\alpha\lambda} - D_{\alpha}h_{\lambda\mu})$$
$$= 2k_{(\lambda}{}^{\nu}Y_{\mu)} - 2k_{(\lambda}{}^{\nu}k_{\mu)\alpha}Y\alpha.$$

Comparing (3.7) with (3.8), we obtain (3.4). On the other hand, substituting (3.4) into

$$D_{\nu}k_{\lambda\mu} = \partial_{\nu}k_{\lambda\mu} + 2k_{\alpha\mu}\Gamma^{\alpha}_{\lambda\nu} - k_{\lambda\alpha}\Gamma^{\alpha}_{\mu\nu},$$

we obtain

(3.9)
$$D_{\nu}k_{\lambda\mu} = \nabla_{\nu}k_{\lambda\mu} - 2^{(2)}k_{\nu[\mu}k_{\lambda]\alpha}Y^{\alpha} + 2k_{\nu[\mu}k_{\lambda]\alpha}Y^{\alpha}.$$

Comparing (3.2)(b) with (3.9), we obtain (3.5). Conversely, suppose that (3.4) and (3.5) hold. Substituting (3.4) into (3.6), we obtain (3.2)(a). Similarly, substituting (3.5) into (3.9), we obtain (3.2)(b). \square

REMARK 3.3. In virtue of Theorem 3.2, it is obvious that if the Einstein's equation (2.5) admits a particular solution $\Gamma^{\nu}_{\lambda\mu}$ of the form (3.1), it must be of the form (3.4). This reduces the investigation of the particular solution (3.4) to the study of the vector Y^{ν} defining (3.4).

4. The representation of a particular solution (3.4) of the Einstein's equation

From Remark(3.3), in order to know the particular solution (3.4) of the Einstein's equation it is necessary and sufficient to know the vector Y^{ν} defining (3.4) and satisfying (3.5), which is the main goal of this section. Our investigation is based on the skew-symmetric tensor

(4.1)
$$P_{\lambda\mu} = (1 - \phi)k_{\lambda\mu} + {}^{(3)}k_{\lambda\mu},$$

where ϕ is given by (2.6)(d). And the following quantities are used in our further considerations. For s = 2, 4, ..., n + 2,

(4.2)
$$\Omega_0 = 0, \quad \Omega_s = (\phi - 1)\Omega_{s-2} + K_{s-2}.$$

A direct calculation shows that

$$\Omega_{n+2} = (\phi - 1)^{\frac{n}{2}} K_0 + (\phi - 1)^{\frac{n-2}{2}} K_2 + (\phi - 1)^{\frac{n-4}{2}} K_4 + \dots + (\phi - 1) K_{n-2} + K_n$$

$$= \sum_{n=0}^{n} {\{\sqrt{\phi - 1}\}^{n-p} K_p}$$
(4.3)

LEMMA 4.1. The determinant of the tensor $P_{\lambda\mu}$, given by (4.1), never vanishes, i.e.,

$$(4.6) det(P_{\lambda \mu}) \neq 0,$$

if and only if

(4.7)
$$Det(\sqrt{\phi - 1} h_{\lambda\mu} + k_{\lambda\mu}) \neq 0.$$

Proof. The tensor $P_{\lambda\mu}$ can be rewritten as

$$(4.8) P_{\lambda\mu} = -k_{\lambda\nu}h^{\nu\alpha}(\sqrt{\phi-1}\,h_{\beta\alpha} + k_{\beta\alpha})h^{\beta\gamma}(\sqrt{\phi-1}\,h_{\gamma\mu} + k_{\gamma\mu}).$$

Since the determinant of a product of matrices is the product of the determinants of the matrices, and $det(A^{-1}) = 1/det(A)$ we obtain, in virtue of (2.2), (2.3) and (2.9),

$$(4.9) \det(P_{\lambda\mu}) = -T(\frac{1}{H})\{Det(\sqrt{\phi-1}h_{\lambda\mu} + k_{\lambda\mu})\}(\frac{1}{H})\{Det(\sqrt{\phi-1}h_{\lambda\mu} + k_{\lambda\mu})\}$$

$$= -\frac{T}{H^2}\{Det(\sqrt{\phi-1}h_{\lambda\mu} + k_{\lambda\mu})\}^2,$$

which proves this lemma.

LEMMA 4.2. The determinant of the tensor $P_{\lambda\mu}$ never vanishes if and only if

$$(4.10) \Omega_{n+2} \neq 0,$$

if and only if the scalar $\sqrt{\phi-1}$ is not a basic scalar in UFT X_n .

Proof. In virtue of (2.8), (2.12), and (4.3), we obtain

(4.11)
$$Det(\sqrt{\phi - 1} h_{\lambda \mu} + k_{\lambda \mu}) = H \sum_{p=0}^{n} {\{\sqrt{\phi - 1}\}^{n-p} K_p} = H\Omega_{n+2}.$$

Hence from the above relation (4.11) and Lemma 4.1 we obtain, in virtue of (2.2), (2.13) and (4.3), that $det(P_{\lambda\mu}) \neq 0$, iff $\Omega_{n+2} \neq 0$, iff the scalar $\sqrt{\phi-1}$ is not a basic scalar.

REMARK 4.3. In our further considerations in the present paper, we assume that the scalar $\sqrt{\phi-1}$ is not a basic scalar in UFT X_n , that is $\Omega_{n+2} \neq 0$. Therefore $det(P_{\lambda\mu}) \neq 0$. For the lower-dimensional cases n=2,4, we obtain the following Table 1, in virtue of (2.6)(b) and (d), (2.11)(a) and (b), and (4.2). According to this Table 1, this assumption is automatically satisfied for the case n=2.

Table 1. For n = 2, 4, the representations of g and Ω_{n+2}

n	g	Ω_{n+2}
2	g = 1 + k	$\Omega_4 = -k - 1 = -g \neq 0$
4	$g = 1 - \frac{1}{2}\phi + k$	$\Omega_6 = 2(g-k)^2 - (g-k) + k$

REMARK 4.4. From Remak 4.3, since $det(P_{\lambda\mu}) \neq 0$, there exists a unique skew-symmetric tensor $Q^{\lambda\nu}$ satisfying

$$(4.12) P_{\lambda\mu} Q^{\lambda\nu} = \delta^{\nu}_{\mu}.$$

In our further considerations in the present paper, we use the following useful abbreviations for any tensor $Z_{\lambda\nu}$, for p,q=1,2,3,...

(4.13)
$${}^{(p)}Z_{\lambda\mu} = {}^{(p-1)}k_{\lambda}{}^{\nu}Z_{\nu\mu}.$$

We then have

(4.14)
$${}^{(1)}Z_{\lambda\mu} = Z_{\lambda\mu}, \quad {}^{(p)}k_{\lambda}{}^{\nu}{}^{(q)}Z_{\nu\mu} = {}^{(p+q)}Z_{\lambda\mu}.$$

LEMMA 4.5. The following recurrence relations in holds:

(a)
$$^{(4)}Q^{\mu\nu} = (\phi - 1)^{(2)}Q^{\mu\nu} - h^{\mu\nu},$$

(4.15) (b)
$${}^{(3)}Q^{\omega\nu} = (\phi - 1) Q^{\omega\nu} + \overline{k}^{\omega\nu},$$

(c)
$$^{(p)}Q^{\omega\nu} = (\phi - 1)^{(p-2)}Q^{\omega\nu} - ^{(p-4)}k^{\omega\nu} \quad (p = 4, 5, ...).$$

Proof. Substituting (4.1) into (4.12), we obtain (4.15)(a) in virtue of (4.13). Multiplying $\overline{k}^{\mu\omega}$ to both sides of (4.15)(a), we obtain (4.15)(b) in virtue of (2.10) and (4.13). Multiplying $^{(p-4)}k^{\omega}{}_{\mu}$ to both sides of (4.15)(a), we obtain the relation (4.15)(c) in virtue of (4.13).

THEOREM 4.6. The representation of the tensor $Q^{\lambda\mu}$ in UFT X_n , given by (4.12), may be given by

(4.16)
$$Q^{\lambda\mu} = \frac{1}{\Omega_{n+2}} \sum_{s=0}^{n-2} \Omega_{s+2} \,^{(n-s-3)} k^{\lambda\mu},$$

where Ω_{n+2} is given by (4.3), and

$$(4.17) (-1)k^{\lambda\mu} = -\overline{k}^{\lambda\mu}.$$

Proof. Multiplying $Q^{\nu\mu}$ to both sides of (2.11)(c), and using (4.13), we obtain

(4.18)
$$\sum_{s=0}^{n} K_s {(n-s+1)} Q^{\lambda \mu}$$
$$= K_0 {(n+1)} Q^{\lambda \mu} + K_2 {(n-1)} Q^{\lambda \mu} + \sum_{s=4}^{n} K_s {(n-s+1)} Q^{\lambda \nu} = 0.$$

Substituting $^{(n+1)}Q^{\lambda\mu}$ from (4.15)(c) into the first term of (4.18), and using (2.6)(b) and (4.2), we obtain

$$- {(n-3)}k^{\lambda\mu} + \{(\phi - 1) + K_2\}^{(n-1)}Q^{\lambda\mu} + \sum_{s=4}^{n} K_s {(n-s+1)}Q^{\lambda\nu}$$

$$= - {(n-3)}k^{\lambda\mu} + \Omega_4 {(n-1)}Q^{\lambda\mu} + K_4 {(n-3)}Q^{\lambda\mu} + \sum_{s=6}^{n} K_s {(n-s+1)}Q^{\lambda\nu}$$

$$= 0.$$

Substituting again $^{(n-1)}Q_{\lambda\mu}$ from (4.15)(c) into (4.19), and using (4.2), we obtain

$$- {^{(n-3)}k^{\lambda\mu} - \Omega_4} {^{(n-5)}k^{\lambda\mu} + \{(\phi - 1)\Omega_4 + K_4\}} {^{(n-3)}Q^{\lambda\mu}}$$

$$+ \sum_{s=6}^{n} K_s {^{(n-s+1)}Q^{\lambda\mu}}$$

$$= - {^{(n-3)}k^{\lambda\mu} - \Omega_4} {^{(n-5)}k^{\lambda\mu} + \Omega_6} {^{(n-3)}Q^{\lambda\mu} + K_6} {^{(n-5)}Q^{\lambda\mu}}$$

$$+ \sum_{s=8}^{n} K_s {^{(n-s+1)}Q^{\lambda\mu}}$$

$$= 0.$$

After (n-2)/2 steps of successive repeat substituting for $^{(p)}Q^{\lambda\mu}$ from (4.15)(c), we obtain

(4.21)
$$-\sum_{s=0}^{n-4} \Omega_{s+2} {}^{(n-s-3)} k^{\lambda \mu} + \Omega_n {}^{(3)} Q^{\lambda \mu} + K_n Q^{\lambda \mu} = 0,$$

in virtue of (4.2). Substituting (4.15)(b) into (4.21), and using (4.15)(b) and (4.17), we obtain

$$(4.22) - \sum_{s=0}^{n-4} \Omega_{s+2} (n-s-3) k^{\lambda \mu} + \Omega_n \overline{k}^{\lambda \mu} + \{ (\phi - 1) \Omega_n + K_n \} Q^{\lambda \mu}$$
$$= - \sum_{s=0}^{n-2} \Omega_{s+2} (n-s-3) k^{\lambda \mu} + \Omega_{n+2} Q^{\lambda \mu} = 0,$$

which is condensed to (4.16).

Table 2. For n=2,4, the representations of $\overline{k}^{\lambda\mu}$ and $Q^{\lambda\mu}$

n	$\overline{k}^{\lambda\mu}$	$Q^{\lambda\mu}$
2	$\frac{1}{k}k^{\lambda\mu}$ $\frac{1}{k}(^{(3)}k^{\lambda\mu} + (g-k-1)k^{\lambda\mu})$	$\frac{\frac{1}{g}\overline{k}^{\lambda\mu}}{\frac{k^{\lambda\mu} + (g-k)\overline{k}^{\lambda\mu}}{2(g-k)^2 - (g-k) + k}}$

REMARK 4.7. As useful results of Theorem 4.7, for the lower-dimensional cases n = 2, 4, we obtain the following Table 2, in virtue of (2.6)(b) and (d), (2.14), and Table 1.

THEOREM 4.8. A necessary and sufficient condition for the Einstein's equation (2.5) to admit exactly one particular solution $\Gamma^{\nu}_{\lambda\mu}$ of the form (3.1) is that the basic tensor $g_{\lambda\mu}$ satisfies the following condition:

(4.23)
$$\nabla_{\nu} k_{\lambda\mu} = -2(k_{\nu[\lambda} h_{\mu]\alpha} - {}^{(2)}k_{\nu[\lambda} k_{\mu]\alpha})Q^{\gamma\alpha}\nabla_{\beta} k_{\gamma}{}^{\beta},$$

where $Q^{\lambda\mu}$ is given by (4.16). If this condition is satisfied, then the vector Y^{ν} which defines the particular solution is given by

$$(4.24) Y^{\alpha} = Q^{\lambda \alpha} \nabla_{\beta} k_{\lambda}{}^{\beta}.$$

Proof. If the Einstein's equation (2.5) admits a solution of the form (3.1), then the condition (3.5) holds in virtue of Theorem 3.2. The condition (3.5) is equivalent to

$$(4.25) \qquad \nabla_{\nu}k_{\lambda}{}^{\mu} = -k_{\nu\lambda}Y^{\mu} + k_{\nu}{}^{\mu}Y_{\lambda} + {}^{(2)}k_{\nu\lambda}k^{\mu}{}_{\alpha}Y^{\alpha} - {}^{(2)}k_{\nu}{}^{\mu}k_{\lambda\alpha}Y^{\alpha}.$$

Contracting for ν and μ in (4.25), we obtain

(4.26)
$$\nabla_{\beta}k_{\lambda}^{\beta} = \{(1-\phi)k_{\lambda\beta} + {}^{(3)}k_{\lambda\beta}\}Y^{\alpha} = P_{\lambda\beta}Y^{\beta}.$$

Multiplying $Q^{\lambda\alpha}$ on both sides of (4.26) and making use of (4.12), we obtain (4.24). Substituting (4.24) into (3.5), we obtain (4.23). Conversely, suppose that the condition (4.23) holds. With the vector Y^{ν} given by (4.24), define a connection $\Gamma^{\nu}_{\lambda\mu}$ by (3.4), and substitute this connection into (2.5). This connection satisfies (2.5) in virtue of our assumption (4.23). Hence it is a solution of the Einstein's equation (2.5). Assume now that the Einstein's equation (2.5) has another solution ${}^*\Gamma^{\nu}_{\lambda\mu}$ of the form

$$*S_{\lambda \mu}{}^{\nu} = k_{\lambda \mu} *Y^{\nu},$$

$$(4.28) *Y^{\nu} \neq Y^{\nu}.$$

Then in virtue of the proof of Theorem 3.2, the vector ${}^*Y^{\nu}$ must satisfy

(4.29)
$$\nabla_{\nu} k_{\lambda\mu} = -2k_{\nu[\lambda} * Y_{\mu]} + 2^{(2)} k_{\nu[\lambda} k_{\mu]\alpha} Y^{\alpha},$$

Applying the same method used to derive (4.24), we have from (4.29)

$$^*Y^{\alpha} = Q^{\lambda\alpha} \, \nabla_{\beta} k_{\lambda}{}^{\beta} = Y^{\alpha},$$

which contradicts to the assumption (4.28). This proves the uniqueness of the solution of the form (3.1) under condition (4.23).

Since we have obtained the representation of the tensor $Q_{\lambda\nu}$ in terms of the basic tensor $g_{\lambda\mu}$, it is possible for us to represent the solution $\Gamma^{\nu}_{\lambda\mu}$ of The Einstein's equation, of the form (3.1), in terms of $g_{\lambda\mu}$ by simply

substituting (4.24) into (3.4). Without proof, we can state the following theorem.

THEOREM 4.9. Under the condition (4.23), when a connection $\Gamma^{\nu}_{\lambda\mu}$ of the form (3.1) is a solution of the Einstein's equation (2.5), the complete representation of the solution in terms of the basic tensor $g_{\lambda\mu}$ may be given by (4.30)

$$\Gamma^{\nu}_{\lambda\mu} = \{\lambda^{\nu}_{\mu}\} - \frac{1}{\Omega_{n+2}} \sum_{s=0}^{n-2} \Omega_{s+2} (2k_{(\lambda}^{\nu}k_{\mu)\alpha} - k_{\lambda\mu}\delta^{\nu}_{\alpha})^{(n-s-3)} k^{\gamma\alpha} \nabla_{\beta} k_{\gamma}^{\beta}.$$

References

- [1] A. Einstein, *The meaning of relativity*, Princeton University Press, Princeton, New Jersey, 1950.
- [2] J. W. Lee, The representation of E(*k)-connection in n-*g-UFT, Tensor, N. S. 66 (2005), 209-214.
- [3] J. W. Lee and K. T. Chung, A solution of Einstein's unified field equations, Comm. Korean Math. Soc. 11 (1996), no. 4, 1047–1053.
- [4] K. T. Chung and D. H. Cheoi, Relations of two n-dimensional unified field theories, Acta Math. Hung. 45 (1985), 141–149.
- [5] K. T. Chung and H. W. Lee, *n-dimensional considerations of indicators*, Yonsei Nonchong. Yonsei Univ. **12** (1975), 1–5.
- [6] K. T. Chung and S. K. Yang, On the relations of two Einstein's 4-dimensional unified field theores, J. Korean Math. Soc. 18 (1981), no. 1, 43–48
- [7] K. T. Chung and T. S. Han, n-dimensional representations of the unified field $tensor *q^{\lambda\nu}$, Inter. Jour. of Theo. Phys. **20** (1981), 739–747
- [8] R. S. Mishra, n-dimensional considerations of the unified field theory of relativity, Tensor, N. S. 8 (1958), 95–122
- [9] V. Hlavatý, Geometry of Einstein's unified field theory, P. Noordhoff Ltd. New York, 1957.

*

Department of Mathematics Yonsei University Wonju 222-701, Republic of Korea *E-mail*: jwlee806@yonsei.ac.kr