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A PARTICULAR SOLUTION OF THE EINSTEIN’S
EQUATION IN EVEN-DIMENSIONAL UFT Xn

Jong Woo LEE*

Abstract. In the unified field theory(UFT), in order to find a so-
lution of the Einstein’s equation it is necessary and sufficient to
study the torsion tensor. The main goal in the present paper is to
obtain, using a given torsion tensor (3.1), the complete representa-
tion of a particular solution of the Einstein’s equation in terms of
the basic tensor gλν in even-dimensional UFT Xn.

1. Introduction

Einstein ([1], 1950) proposed a new unified field theory that would in-
clude both gravitation and electromagnetism. Characterizing Einstein’s
unified field theory as a set of geometrical postulates in a 4-dimensional
generalized Riemannian space X4 (i.e., space-time), Hlavatý ([9], 1957)
gave the mathematical foundation of the 4-dimensional unified field the-
ory(UFT X4) defined by the unified field tensor gλν for the first time.
Generalizing X4 to the n-dimensional generalized Riemannian mani-
fold Xn, n-dimensional generalization of this theory, the so-called Ein-
stein’s n-dimensional unified field theory(UFT Xn), had been obtained
by Mishra ([8], 1958). Since then many consequences of this theory has
been obtained by a number of mathematicians. However, it has been
unable yet to represent a general n-dimensional Einstein’s connection
in a surveyable tensorial form. The purpose of the present paper is to
obtain a necessary and sufficient condition for the existence of a partic-
ular solution of Einstein’s equation in even-dimensional UFT Xn. Next,
under this condition, we shall obtain a precise tensorial representation of
this solution in terms of the basic tensor gλν . The obtained results and
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discussions in the present paper will be useful for the even-dimensional
considerations of the unified field theory.

2. Preliminary

This section is a brief collection of basic concepts, notations, and
results, which are needed in our further considerations in the present
paper.

Let Xn be an n-dimensional generalized Riemannian manifold cov-
ered by a system of real coordinate neighborhoods {U; xν}, where, here
and in the sequel, Greek indices run over the range {1, 2, · · · , n} and
follow the summation convention. In the Einstein’s usual n-dimensional
unified field theory(UFT Xn), the algebraic structure on Xn is imposed
by a basic real non-symmetric tensor gλµ, which may be split into its
symmetric part hλµ and skew-symmetric part kλµ:

(2.1) gλµ = hλµ + kλµ,

where we assume that

(2.2) G = det(gλµ) 6= 0, H = det(hλµ) 6= 0.

Since det(hλµ) 6= 0, we may define a unique tensor hλν(= hνλ) by

(2.3) hλµhλν = δν
µ.

We use the tensors hλν and hλµ as tensors for raising and/or lowering
indices for all tensors defined in UFT Xn in the usual manner. Then
we may define new tensors by

(2.4) kα
µ = kλµhλα, kλ

α = kλµhµα.

In UFT Xn, the differential geometric structure is imposed by the tensor
gλµ by means of a connection Γν

λµ defined by the Einstein’s equation:

(2.5a) ∂ωgλµ − gαµΓα
λω − gλαΓα

ωµ = 0 (∂ν =
∂

∂xν
),

or equivalently

(2.5b) Dωgλµ = 2Sωµ
αgλα,

where Dω denotes the symbolic vector of the covariant derivative with
respect to Γν

λµ, and Sλµ
ν is the torsion tensor of Γν

λµ.
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In UFT Xn, the following quantities are frequently used, where p =
1, 2, 3, ... :

(a) g =
G

H
, k =

T

H
,

(b) K0 = 1, Kp = k[α1

α1 kα2
α2 ... kαp]

αp ,

(c) (0)kλ
ν = δν

λ, (p)kλ
ν = kλ

α (p−1)kα
ν

= (p−1)kλ
α

kα
ν ,

(d) φ = (2)kα
α.

(2.6)

It should be remarked that the tensor (p)kλν is symmetric if p is even,
and skew-symmetric if p is odd.

An eigenvector Zµ of kλµ which satisfies

(2.7) (Mhλµ + kλµ)Zµ = 0,

where M is an arbitrary scalar, is called a basic vector of UFT Xn, and
corresponding eigenvalue of kλµ basic scalar of UFT Xn. Furthermore
the characteristic polynomial corresponding to kλµ, that is,

(2.8) D(M) = Det(Mhλµ + kλµ),

will be termed basic polynomial of UFT Xn

Remark 2.1. From now on, we shall assume that

(2.9) T = det(kλµ) 6= 0.

Hence there exists a unique skew-symmetric tensor k
λµ in Xn satisfying

(2.10) kλµ k
λν = δν

µ.

Since kλµ is skew-symmetric, and T 6= 0, the dimension of Xn is even.
That is, n is even. Hence all our further considerations in the present
paper are dealt in even-dimensional UFT Xn.

It has been shown by Chung[4, 5, 6] that the following relations hold
in UFT Xn.

(a) Kn = k, Kp = 0 (p is odd),

(b) g =
n∑

s=0

Ks,

(c)
n∑

s=0

Ks
(n−s)kλ

ν
= 0.

(2.11)

Here and in what follows, the index s is assumed to take the values 0,
2, 4, ... , n in the specified range.
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It has been shown by Chung[5] that in UFT Xn, the basic polynomial
(2.8) may be given by

D(M) = H(Mn + Mn−2K2 + ... + M2Km−2 + k)

= H
n∑

p=0

Mn−pKp,
(2.12)

and hence M is a basic scalar in UFT Xn if and only if M satisfies

(2.13)
n∑

p=0

Mn−pKp = 0.

It has been shown by Lee[2] that in UFT Xn, the representation of
the tensor k

λµ, given by (2.10), may be given by

(2.14) k
λµ =

1
k

n−2∑

s=0

Ks
(n−s−1)kλµ.

3. A particular solution of the Einstein’s equation

In this section, when a connection Γν
λµ of the form

(3.1) Sλµ
ν = kλµY ν ,

for some nonzero vector Y ν , is a solution of the Einstein’s equation (2.5)
in UFT Xn, we find its complete representation.

Lemma 3.1. When a connection Γν
λµ of the form (3.1) is a solution of

the Einstein’s equation (2.5), (2.5) is equivalent to the following system
of equations:

(a) Dωhλµ = 2 kω(µYλ) + 2 kω(µkλ)αY α,

(b) Dωkλµ = 2 kω[µYλ] + 2 kω[µkλ]αY α,
(3.2)

Proof. Substituting (2.1) and (3.1) into (2.5b), we obtain

(3.3) Dωgλµ = 2 kωµYλ + 2 kωµkλαY α.

The equations (3.2)(a) and (3.2)(b) follow from (3.3) and from

Dωhλµ = Dωg(λµ), Dωkλµ = Dωg[λµ].

Conversely, taking the sum of (3.2)(a) and (3.2)(b), we obtain (3.3).
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Theorem 3.2. When a connection Γν
λµ of the form (3.1) is a solu-

tion of the Einstein’s equation (2.5), (2.5) is equivalent to the following
system of equations:

(3.4) Γν
λµ = {λ

ν
µ} − 2k(λ

ν kµ)αY α + kλµ Y ν ,

(3.5) ∇ν kλµ = −2kν[λ Yµ] + 2(2)kν[λ kµ]αY α,

where ∇ω is the symbolic vector of the covariant derivative with respect
to the Christoffel symbols {λ

ν
µ} defined by hλµ.

Proof. From lemma 3.1, when a connection Γν
λµ of the form (3.1) is a

solution of the Einstein’s equation (2.5), (2.5) is equivalent to the system
of equations (3.2)(a) and (b). In virtue of relation

(3.6) Dωhλµ = ∂ωhλµ − hαµΓα
λω − hλαΓα

µω,

and (3.1), we obtain

1
2
hνα(Dλhαµ + Dµhαλ −Dαhλµ)

= {λ
ν
µ} − 2Sν

(λµ) + Sλµ
ν − Γν

λµ

= {λ
ν
µ} − 2 kν

(λYµ) + kλµY ν − Γν
λµ.

(3.7)

On the other hand, it follows from (3.2)(a) that

1
2
hνα(Dλhαµ + Dµhαλ −Dαhλµ)

= 2 k(λ
νYµ) − 2 k(λ

νkµ)αY α.
(3.8)

Comparing (3.7) with (3.8), we obtain (3.4). On the other hand, substi-
tuting (3.4) into

Dνkλµ = ∂νkλµ + 2 kαµΓα
λν − kλαΓα

µν ,

we obtain

(3.9) Dνkλµ = ∇νkλµ − 2 (2)kν[µkλ]αY α + 2 kν[µkλ]αY α.

Comparing (3.2)(b) with (3.9), we obtain (3.5). Conversely, sup-
pose that (3.4) and (3.5) hold. Substituting (3.4) into (3.6), we obtain
(3.2)(a). Similarly, substituting (3.5) into (3.9), we obtain (3.2)(b).

Remark 3.3. In virtue of Theorem 3.2, it is obvious that if the Ein-
stein’s equation (2.5) admits a particular solution Γν

λµ of the form (3.1),
it must be of the form (3.4). This reduces the investigation of the par-
ticular solution (3.4) to the study of the vector Y ν defining (3.4).
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4. The representation of a particular solution (3.4) of the
Einstein’s equation

From Remark(3.3), in order to know the particular solution (3.4) of
the Einstein’s equation it is necessary and sufficient to know the vector
Y ν defining (3.4) and satisfying (3.5), which is the main goal of this
section. Our investigation is based on the skew-symmetric tensor

(4.1) Pλµ = (1− φ)kλµ + (3)kλµ,

where φ is given by (2.6)(d). And the following quantities are used in
our further considerations. For s = 2, 4, ..., n + 2,

(4.2) Ω0 = 0, Ωs = (φ− 1)Ωs−2 + Ks−2.

A direct calculation shows that

Ωn+2 = (φ− 1)
n
2 K0 + (φ− 1)

n−2
2 K2 + (φ− 1)

n−4
2 K4 +

... + (φ− 1)Kn−2 + Kn

=
n∑

p=0

{
√

φ− 1}n−pKp

(4.3)

Lemma 4.1. The determinant of the tensor Pλµ, given by (4.1), never
vanishes, i.e.,

(4.6) det(Pλµ) 6= 0,

if and only if

(4.7) Det(
√

φ− 1hλµ + kλµ) 6= 0.

Proof. The tensor Pλµ can be rewritten as

(4.8) Pλµ = −kλνh
να(

√
φ− 1hβα + kβα)hβγ(

√
φ− 1hγµ + kγµ).

Since the determinant of a product of matrices is the product of the
determinants of the matrices, and det(A−1) = 1/det(A) we obtain, in
virtue of (2.2), (2.3) and (2.9),

det(Pλµ)

=− T (
1
H

){Det(
√

φ− 1hλµ + kλµ)}( 1
H

){Det(
√

φ− 1hλµ + kλµ)}

=− T

H2
{Det(

√
φ− 1hλµ + kλµ)}2,

(4.9)

which proves this lemma.
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Lemma 4.2. The determinant of the tensor Pλµ never vanishes if and
only if

(4.10) Ωn+2 6= 0,

if and only if the scalar
√

φ− 1 is not a basic scalar in UFT Xn.

Proof. In virtue of (2.8), (2.12), and (4.3), we obtain

(4.11) Det(
√

φ− 1hλµ + kλµ) = H
n∑

p=0

{
√

φ− 1}n−pKp = HΩn+2.

Hence from the above relation (4.11) and Lemma 4.1 we obtain, in virtue
of (2.2), (2.13) and (4.3), that det(Pλµ) 6= 0, iff Ωn+2 6= 0, iff the scalar√

φ− 1 is not a basic scalar.

Remark 4.3. In our further considerations in the present paper, we
assume that the scalar

√
φ− 1 is not a basic scalar in UFT Xn, that

is Ωn+2 6= 0. Therefore det(Pλµ) 6= 0. For the lower-dimensional cases
n = 2, 4, we obtain the following Table 1, in virtue of (2.6)(b) and (d),
(2.11)(a) and (b), and (4.2). According to this Table 1, this assumption
is automatically satisfied for the case n = 2.

Table 1. For n = 2, 4, the representations of g and Ωn+2

n g Ωn+2

2 g = 1 + k Ω4 = −k − 1 = −g 6= 0

4 g = 1− 1
2
φ + k Ω6 = 2(g − k)2 − (g − k) + k

Remark 4.4. From Remak 4.3, since det(Pλµ) 6= 0, there exists a
unique skew-symmetric tensor Qλν satisfying

(4.12) Pλµ Qλν = δν
µ.

In our further considerations in the present paper, we use the following
useful abbreviations for any tensor Zλν , for p, q = 1, 2, 3, ...

(4.13) (p)Zλµ = (p−1)kλ
ν Zνµ.

We then have

(4.14) (1)Zλµ = Zλµ, (p)kλ
ν (q)Zνµ = (p+q)Zλµ.
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Lemma 4.5. The following recurrence relations in holds:

(a) (4)Qµν = (φ− 1) (2)Qµν − hµν ,

(b) (3)Qων = (φ− 1) Qων + k
ων

,

(c) (p)Qων = (φ− 1) (p−2)Qων − (p−4)kων (p = 4, 5, ...).

(4.15)

Proof. Substituting (4.1) into (4.12), we obtain (4.15)(a) in virtue of
(4.13). Multiplying k

µω to both sides of (4.15)(a), we obtain (4.15)(b)
in virtue of (2.10) and (4.13). Multiplying (p−4)kω

µ to both sides of
(4.15)(a), we obtain the relation (4.15)(c) in virtue of (4.13).

Theorem 4.6. The representation of the tensor Qλµ in UFT Xn,
given by (4.12), may be given by

(4.16) Qλµ =
1

Ωn+2

n−2∑

s=0

Ωs+2
(n−s−3)kλµ,

where Ωn+2 is given by (4.3), and

(4.17) (−1)kλµ = −k
λµ

.

Proof. Multiplying Qνµ to both sides of (2.11)(c), and using (4.13),
we obtain

n∑

s=0

Ks
(n−s+1)Qλµ

= K0
(n+1)Qλµ + K2

(n−1)Qλµ +
n∑

s=4

Ks
(n−s+1)Qλν = 0.

(4.18)

Substituting (n+1)Qλµ from (4.15)(c) into the first term of (4.18), and
using (2.6)(b) and (4.2), we obtain

− (n−3)kλµ + {(φ− 1) + K2} (n−1)Qλµ +
n∑

s=4

Ks
(n−s+1)Qλν

=− (n−3)kλµ + Ω4
(n−1)Qλµ + K4

(n−3)Qλµ +
n∑

s=6

Ks
(n−s+1)Qλν

=0.

(4.19)

Substituting again (n−1)Qλµ from (4.15)(c) into (4.19), and using (4.2),
we obtain
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− (n−3)kλµ − Ω4
(n−5)kλµ + {(φ− 1)Ω4 + K4} (n−3)Qλµ

+
n∑

s=6

Ks
(n−s+1)Qλµ

=− (n−3)kλµ − Ω4
(n−5)kλµ + Ω6

(n−3)Qλµ + K6
(n−5)Qλµ

+
n∑

s=8

Ks
(n−s+1)Qλµ

=0.

(4.20)

After (n − 2)/2 steps of successive repeat substituting for (p)Qλµ from
(4.15)(c), we obtain

(4.21) −
n−4∑

s=0

Ωs+2
(n−s−3)kλµ + Ωn

(3)Qλµ + Kn Qλµ = 0,

in virtue of (4.2). Substituting (4.15)(b) into (4.21), and using (4.15)(b)
and (4.17), we obtain

−
n−4∑

s=0

Ωs+2
(n−s−3)kλµ + Ωn k

λµ + {(φ− 1)Ωn + Kn}Qλµ

=−
n−2∑

s=0

Ωs+2
(n−s−3)kλµ + Ωn+2 Qλµ = 0,

(4.22)

which is condensed to (4.16).

Table 2. For n = 2, 4, the representations of k
λµ and Qλµ

n k
λµ

Qλµ

2
1
k
kλµ 1

g
k

λµ

4
1
k
((3)kλµ + (g − k − 1)kλµ)

kλµ + (g − k)kλµ

2(g − k)2 − (g − k) + k

Remark 4.7. As useful results of Theorem 4.7, for the lower-dimen-
sional cases n = 2, 4, we obtain the following Table 2, in virtue of (2.6)(b)
and (d), (2.14), and Table 1.
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Theorem 4.8. A necessary and sufficient condition for the Einstein’s
equation (2.5) to admit exactly one particular solution Γν

λµ of the form

(3.1) is that the basic tensor gλµ satisfies the following condition:

(4.23) ∇ν kλµ = −2(kν[λ hµ]α − (2)kν[λ kµ]α)Qγα∇β kγ
β,

where Qλµ is given by (4.16). If this condition is satisfied, then the
vector Y ν which defines the particular solution is given by

(4.24) Y α = Qλα∇βkλ
β.

Proof. If the Einstein’s equation (2.5) admits a solution of the form
(3.1), then the condition (3.5) holds in virtue of Theorem 3.2. The
condition (3.5) is equivalent to

(4.25) ∇νkλ
µ = −kνλY µ + kν

µYλ + (2)kνλkµ
αY α − (2)kν

µkλαY α.

Contracting for ν and µ in (4.25), we obtain

(4.26) ∇βkλ
β = {(1− φ)kλβ + (3)kλβ}Y α = PλβY β.

Multiplying Qλα on both sides of (4.26) and making use of (4.12), we ob-
tain (4.24). Substituting (4.24) into (3.5), we obtain (4.23). Conversely,
suppose that the condition (4.23) holds. With the vector Y ν given by
(4.24), define a connection Γν

λµ by (3.4), and substitute this connection
into (2.5). This connection satisfies (2.5) in virtue of our assumption
(4.23). Hence it is a solution of the Einstein’s equation (2.5). Assume
now that the Einstein’s equation (2.5) has another solution ∗Γν

λµ of the
form

(4,27) ∗Sλµ
ν = kλµ

∗Y ν ,

(4.28) ∗Y ν 6= Y ν .

Then in virtue of the proof of Theorem 3.2, the vector ∗Y ν must satisfy

(4.29) ∇ν kλµ = −2kν[λ
∗Yµ] + 2(2)kν[λ kµ]αY α,

Applying the same method used to derive (4.24), we have from (4.29)
∗Y α = Qλα∇βkλ

β = Y α,

which contradicts to the assumption (4.28). This proves the uniqueness
of the solution of the form (3.1) under condition (4.23).

Since we have obtained the representation of the tensor Qλν in terms
of the basic tensor gλµ, it is possible for us to represent the solution Γν

λµ

of The Einstein’s equation, of the form (3.1), in terms of gλµ by simply
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substituting (4.24) into (3.4). Without proof, we can state the following
theorem.

Theorem 4.9. Under the condition (4.23), when a connection Γν
λµ of

the form (3.1) is a solution of the Einstein’s equation (2.5), the complete
representation of the solution in terms of the basic tensor gλµ may be
given by
(4.30)

Γν
λµ = {λ

ν
µ} − 1

Ωn+2

n−2∑

s=0

Ωs+2(2k(λ
νkµ)α − kλµδν

α) (n−s−3)kγα∇βkγ
β.
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