• Title/Summary/Keyword: Solution of Polynomial

Search Result 329, Processing Time 0.024 seconds

CUBIC FORMULA AND CUBIC CURVES

  • Woo, Sung Sik
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.209-224
    • /
    • 2013
  • The problem of finding rational or integral points of an elliptic curve basically boils down to solving a cubic equation. We look closely at the cubic formula of Cardano to find a criterion for a cubic polynomial to have a rational or integral roots. Also we show that existence of a rational root of a cubic polynomial implies existence of a solution for certain Diophantine equation. As an application we find some integral solutions of some special type for $y^2=x^3+b$.

BOUNDARY COLLOCATION FAST POISSON SOLVER ON IRREGULAR DOMAINS

  • Lee, Dae-Shik
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.27-44
    • /
    • 2001
  • A fast Poisson solver on irregular domains, based on bound-ary methods, is presented. The harmonic polynomial approximation of the solution of the associated homogeneous problem provides a good practical boundary method which allows a trivial parallel processing for solution evaluation or straightfoward computations of the interface values for domain decomposition/embedding. AMS Mathematics Subject Classification : 65N35, 65N55, 65Y05.

INVERSE CONSTRAINED MINIMUM SPANNING TREE PROBLEM UNDER HAMMING DISTANCE

  • Jiao, Li;Tang, Heng-Young
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.283-293
    • /
    • 2010
  • In this paper, inverse constrained minimum spanning tree problem under Hamming distance. Such an inverse problem is to modify the weights with bound constrains so that a given feasible solution becomes an optimal solution, and the deviation of the weights, measured by the weighted Hamming distance, is minimum. We present a strongly polynomial time algorithm to solve the inverse constrained minimum spanning tree problem under Hamming distance.

THE NUMBERS OF PERIODIC SOLUTIONS OF THE POLYNOMIAL DIFFERENTIAL EQUATION

  • Zhengxin, Zhou
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.265-277
    • /
    • 2004
  • This article deals with the number of periodic solutions of the second order polynomial differential equation using the Riccati equation, and applies the property of the solutions of the Riccati equation to study the property of the solutions of the more complicated differential equations. Many valuable criterions are obtained to determine the number of the periodic solutions of these complex differential equations.

CURVED DOMAIN APPROXIMATION IN DIRICHLET'S PROBLEM

  • Lee, Mi-Young;Choo, Sang-Mok;Chung, Sang-Kwon
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.1075-1083
    • /
    • 2003
  • The purpose of this paper is to investigate the piecewise wise polynomial approximation for the curved boundary. We analyze the error of an approximated solution due to this approximation and then compare the approximation errors for the cases of polygonal and piecewise polynomial approximations for the curved boundary. Based on the results of analysis, p-version numerical methods for solving Dirichlet's problems are applied to any smooth curved domain.

Fuzzy least squares polynomial regression analysis using shape preserving operations

  • Hong, Dug-Hun;Hwang, Chang-Ha;Do, Hae-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.571-575
    • /
    • 2003
  • In this paper, we describe a method for fuzzy polynomial regression analysis for fuzzy input--output data using shape preserving operations for least-squares fitting. Shape preserving operations simplifies the computation of fuzzy arithmetic operations. We derive the solution using mixed nonlinear program.

New State-of-Charge Polynomial using Hermite Interpolation (헤르미트 보간법을 이용한 새로운 SOC 다항식)

  • Jung, Ji-Heung;Jeon, Joon-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.1
    • /
    • pp.9-17
    • /
    • 2011
  • This paper provides, through the use of Hermite Interpolation, a new polynomial for Storage of Charge(SOC) solution of the low-power-battery. It also gives a general formula which permits direct and simple computation of coefficients of the proposed polynomial. From the simulation results based on real SOC, it is shown that this new approach is more accurate and computationally efficient than previous Boltzmann's SOC. This solution provides a new insight into the development of SOC algorithm.

NUMERICAL EXPERIMENTS OF THE LEGENDRE POLYNOMIAL BY GENERALIZED DIFFERENTIAL TRANSFORM METHOD FOR SOLVING THE LAPLACE EQUATION

  • Amoupour, Ebrahim;Toroqi, Elyas Arsanjani;Najafi, Hashem Saberi
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.639-650
    • /
    • 2018
  • Finding a solution for the Legendre equation is difficult. Especially if it is as a part of the Laplace equation solving in the electric fields. In this paper, first a problem of the generalized differential transform method (GDTM) is solved by the Sturm-Liouville equation, then the Legendre equation is solved by using it. To continue, the approximate solution is compared with the nth-degree Legendre polynomial for obtaining the inner and outer potential of a sphere. This approximate is more accurate than the previous solutions, and is closer to an ideal potential in the intervals.

FUZZY POLYNOMIAL REGRESSION ANALYSIS USING SHAPE PRESERVING IOERATION

  • Hong, Dug-Hun;Do, Hae-Young
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.869-880
    • /
    • 2001
  • In this paper, we describe a method for fuzzy polynomial regression analysis for fuzzy input-output data using shape preserving operations based on Tanaka’s approach. Shape preserving operations simplifies the computation of fuzzy arithmetic operations. We derive the solution using general linear program.

Shape Reconstruction from Unorganized Cloud of Points using Adaptive Domain Decomposition Method (적응적 영역분할법을 이용한 임의의 점군으로부터의 형상 재구성)

  • Yoo Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.89-99
    • /
    • 2006
  • In this paper a new shape reconstruction method that allows us to construct surface models from very large sets of points is presented. In this method the global domain of interest is divided into smaller domains where the problem can be solved locally. These local solutions of subdivided domains are blended together according to weighting coefficients to obtain a global solution using partition of unity function. The suggested approach gives us considerable flexibility in the choice of local shape functions which depend on the local shape complexity and desired accuracy. At each domain, a quadratic polynomial function is created that fits the points in the domain. If the approximation is not accurate enough, other higher order functions including cubic polynomial function and RBF(Radial Basis Function) are used. This adaptive selection of local shape functions offers robust and efficient solution to a great variety of shape reconstruction problems.