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NUMERICAL EXPERIMENTS OF THE LEGENDRE

POLYNOMIAL BY GENERALIZED DIFFERENTIAL

TRANSFORM METHOD FOR SOLVING

THE LAPLACE EQUATION

Ebrahim Amoupour, Elyas Arsanjani Toroqi, and Hashem Saberi Najafi

Abstract. Finding a solution for the Legendre equation is difficult. Es-

pecially if it is as a part of the Laplace equation solving in the electric

fields. In this paper, first a problem of the generalized differential trans-
form method (GDTM) is solved by the Sturm-Liouville equation, then

the Legendre equation is solved by using it. To continue, the approxi-

mate solution is compared with the nth-degree Legendre polynomial for
obtaining the inner and outer potential of a sphere. This approximate

is more accurate than the previous solutions, and is closer to an ideal
potential in the intervals.

1. Introduction

In recent years, the study of systems and fractional equations, with various
methods, has helped a lot to improve physics and engineering [9, 14, 16, 20].
For example, Grunwald-Letnikov, Riemann-Liouville, and Caputo fractional
derivatives have been introduced in [9, 14, 16]. The Laplace equation is one of
the most important PDEs in Physics and Electronic [2,7,8,10,23]. It represents
the equilibrium. For example, when the heat transfer in a body reaches the
equilibrium, solving of the Laplace equation shows the temperature in different
places. Also, the Laplace equation is used to experiment density of chemical
material in equilibrium and in conditions of electric and gravitational fields. It
is solved by using Legendre polynomials [2, 8, 10]. To continue, two practical
examples of this equation are described. If u(x) be the density of chemical
material then its output flux in each region V is zero∫

∂V

F−→n ds = 0,
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where F shows the flux which is proper to the gradient of function u.

F = −α∇u, α > 0.

According to the divergence theorem, we have∫
∂V

F−→n ds =

∫
V

div(F )dx = 0.

The region V is arbitrary. Hence, the Laplace equation is written in three
dimensional space as Cartesian coordinates

div(F ) = 0,

div(∇u) = 0,

∇2u = 0, ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

For the second example, we suppose that E, ρ and ε0 are field, density and
the permittivity of vacuum, respectively. Hence, the mathematical model of
mentioned values is as follow:

(1) ∇ · E =
ρ

ε0
, ∇× E = 0.

When the nucleus of the field is zero, then according to the Liouville theorem,
the field has the gradient of a scalar function as u. This function is called
potential, which the electrostatic field is its gradient.

E = −∇u.(2)

According to (1) and (2), we have

∇2u = − ρ

ε0
.(3)

Eq. (3) is called the Poisson equation. If there is no electric charge, that is
ρ = 0, then the Poisson equation to be transformed into the Laplace equation.

∇2u = 0.(4)

Using spherical coordinates in (4), we have

∇2u =
1

r2

[
∂

∂r

(
r2 ∂u

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

sin2 θ

∂2u

∂φ2

]
= 0.(5)

One of the methods to solve (5) is the separation of the variables. We suppose
that the potential function is followed by

u = R(r) · P (θ) ·Q(φ),(6)

where r, θ and φ are radius, the angle between a vector and the z-axis and the
angle of vector projection onto xy plane with the positive x-axis, respectively.
Substituting (6) into (5) and by using the direction symmetry condition as
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a boundary condition, Eq. (5) is transformed into three ordinary differential
equations in which direction the solution is symmetry.

d2Q

dφ2
= −m2Q,(7)

r2 d
2R

dr2
+ 2r

dR

dr
− n(n+ 1)R = 0,(8)

1

sin θ

d

dθ

(
sin θ

dP

dθ

)
+ n(n+ 1)P = 0,(9)

where Q(φ) is constant and m2 = 0. Also, m and n are parameters for solving
differential equations in spherical coordinates. Using a new variable x = cos θ,
Eq. (9) is written as follow

sin2 θ
d2P

dx2
− 2 cos θ

dP

dx
+ n(n+ 1)P = 0.(10)

The general solutions (8) and (10) are as follow

R(x) = c1r
n + c2r

−(n+1),

P (x) = c1P1 + c2P2,

where

P1(x) = 1 +

∞∑
q=1

(−1)q
n(n− 2) · · · (n− 2q + 2)(n+ 1) · · · (n+ 2q − 1)

(2q)!
x2q,

P2(x) = x+

∞∑
q=1

(−1)q
(n− 1)(n− 3) · · · (n− 2q + 1)(n+ 2) · · · (n+ 2q)

(2q + 1)!
x2q+1.

Also, we can obtain the above term by the Legendre polynomial of degree n,
known as Rodrigues’ formula [8, 10, 15, 23]. The Laplace equation is solved by
complicated and time-consuming methods. In Section 3, by using the general-
ized differential transform, we can obtain better approximate than the previous
methods. Solving the ordinary, partial and fractional differential equations is
one of the advantages of this method. It obtains approximates of fractional
model as well as ordinary and partial differential equations [3, 11,17–19].

2. Method

In this section, we explain some definitions and theorems related to the
Laplace equation and GDTM.

Theorem 2.1 (The uniqueness theorem). Consider a volume V bounded by
some surface S. If we give the charge density ρ all over V and the potential uS
on S, then the potential all over V is unique.

For details and the proof see [6].

Theorem 2.2. The solution of Laplace equation is consistently depended on
boundary conditions.
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For more details see [1, 21,22].

Definition. The Caputo fractional derivative of order α is defined by

Dαf(x) =
1

Γ(−α+ l)

∫ x

a

(x− τ)−α+l−1f (l)(τ)dτ,

where l − 1 < α ≤ l, l ∈ Z+. For more details see [9, 14,16].

Definition. We define the generalized differential transform for the k-th de-
rivative of a function f(x) as follow:

Fα(k) =
1

Γ(αk + 1)
[(Dα)kf(x)]x=x0

,(11)

where 0 < α ≤ 1 and (Dα)k = Dα · · ·Dα (k-times).

Also, the inverse differential transform of Fα(k) is defined as

f(x) =

∞∑
k=0

Fα(k)(x− x0)αk.(12)

Substituting (11) into (12) and by using the generalized Taylor’s formula [13],
we obtain

f(x) =

∞∑
k=0

Fα(k)(x− x0)αk =

∞∑
k=0

(x− x0)αk

Γ(αk + 1)
((Dα)kf)(x0).

Using Theorem 4 in [13], we have

f(x) ∼=
t∑

k=0

Fα(k)(x− x0)αk,(13)

where t is sufficiently large. The following theorems help us to solve the frac-
tional differential equations.

Theorem 2.3. If f(x) = g(x) ± h(x), then Fα(k) = Gα(k) ± Hα(k), where
0 < α ≤ 1.

Theorem 2.4. If f(x) = cg(x) and c ∈ R, then Fα(k) = cGα(k), where
0 < α ≤ 1.

Theorem 2.5. If f(x) = Dαg(x), then Fα(k) = Γ(α(k+1)+1)
Γ(αk+1) Gα(k + 1).

Theorem 2.6. If f(x) = Dβg(x), l− 1 < β ≤ l and the function g(x) satisfies

the conditions of Theorem 2-5 in [12], then Fα(k) = Γ(αk+β+1)
Γ(αk+1) Gα(k + β

α ),

where 0 < α ≤ 1.

The proofs may be found in [12].
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3. Discussion

In this section, Eq. (10) is solved by using Rodrigues’ formula and other
methods. Then we obtain the approximates of (10) by the Sturm-Liouville
equation and GDTM.

Example 3.1. Figure 1 shows the spherical capacitor consisting of two metallic
hemispheres of radius 1 ft separated by a small slit for reasons of isolation, under
this condition, the upper hemisphere is kept 110V and the lower is grounded.
The boundary condition is as follow

f(θ) =

110, 0 ≤ θ < π

2
,

0,
π

2
< θ ≤ π.

The inner and outer potential of sphere are written as follow, respectively:

un(r, θ) = Anr
nPn(cos θ),(14)

un(r, θ) =
Bn
rn+1

Pn(cos θ),(15)

for n = 0, 1, 2, . . . . Pn(cosφ) are the Legendre polynomials. We consider a
series of terms Eq. (14)

u(r, θ) =

∞∑
n=0

Anr
nPn(cos θ), r ≤ R.(16)

Since the sphere S is given by r = R, the Dirichlet condition satisfies for (16).
(see Eq. (9) in Sect. 12.11 in [10]). Hence, we have

u(R, θ) =

∞∑
n=0

AnR
nPn(cos θ) = f(θ),(17)

where (17) is the Fourier-Legendre series of f(θ). According to Eq. (7) in Sect.
11.9 in [10], we obtain

AnR
n =

2n+ 1

2

∫ 1

−1

f̃(ω)Pn(ω)dω,

where f̃(θ) denotes f(θ). We suppose ω = cos θ. Since the limits of integration
−1 and 1 correspond to θ = π and θ = 0, respectively, we can write

An =
2n+ 1

2Rn

∫ π

0

f(θ)Pn(cos θ) sin θ dθ, n = 0, 1, 2, . . . .(18)

Also, from Eq. (15) we have

u(r, θ) =

∞∑
n=0

Bn
rn+1

Pn(cos θ), r ≥ R.
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According to (8), (9), and (10) in Sect. 12.11 in [10], we obtain

Bn =

(
2n+ 1

2

)
Rn+1

∫ π

0

f(θ)Pn(cos θ) sin θ dθ, n = 0, 1, 2, . . . .

Since R = 1, we can write Eq. (18) as follow

An =

(
2n+ 1

2

)
110

∫ π
2

0

Pn(cos θ) sin θ dθ =

(
2n+ 1

2

)
110

∫ 1

0

Pn(ω)dω.

According to Sect. 5.2 in [10], we obtain

An = 55(2n+ 1)

M∑
m=0

(2n− 2m)!

2nm!(n−m)!(n− 2m)!

∫ 1

0

ωn−2m dω,

where M = n
2 for even n and M = n−1

2 for odd n. For n = 0, 1, 2, . . . we have

A0 = 55, A1 =
165

2
, A2 = 0, A3 = −385

8
, . . . .(19)

Substituting (19) into (16), we have

u(r, θ) = 55 +

(
165

2

)
rP1(cos θ)−

(
385

8

)
r3P3(cos θ) + · · · .

Figure 1. The spherical capacitor.

Note that the even coefficients of An, n = 2, 4, 6, . . . , are zero. Since R = 1
then An = Bn. Hence, the inner and outer potential of sphere are equal and it
is as follow

(20)

u(r, θ) =
55

r
+

(
165

2r2

)
P1(cos θ)−

(
385

8r4

)
P3(cos θ) +

(
605

16r6

)
P5(cos θ)

−
(

4125

128r8

)
P7(cos θ) +

(
7315

256r10

)
P9(cos θ) + · · · ,
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where P0, P1, P3, . . . are the Legendre polynomials of degree n and we can
obtain them by using the Rodrigues’ formula

Pn(ω) =
1

2nn!

dn

dωn
(ω2 − 1)n.

Therefore, we have

(21)

P0(ω) = 1, P1(ω) = ω, P3(ω) =
1

2
(5ω3 − 3ω),

P5(ω) =
63

8
ω5 − 35

4
ω3 +

15

8
ω,

P7(ω) =
429

16
ω7 − 693

16
ω5 +

315

16
ω3 − 35

16
ω,

P9(ω) =
12155

128
ω9 − 6435

32
ω7 +

9009

64
ω5 − 1155

32
ω3 +

315

128
ω, . . . .

Substituting (21) into (20) and setting r = 1 and ω = cos(θ) we obtain the
potential of sphere by Rodrigues’ formula as follow

u(1, θ) = 55 +

(
165

2

)
ω −

(
385

8

)(
1

2
(5ω3 − 3ω)

)
+

(
605

16

)(
63

8
ω5 − 35

4
ω3 +

15

8
ω

)
−
(

4125

128

)(
429

16
ω7 − 693

16
ω5 +

315

16
ω3 − 35

16
ω

)
+

(
7315

256

)(
12155

128
ω9 − 6435

32
ω7 +

9009

64
ω5 − 1155

32
ω3 +

315

128
ω

)
.

By setting the generalized differential transform sin2 θ in the denominator,
GDTM is unable to solve of Eq. (10) because this transform is zero in some
of the steps. Therefore, we consider the Sturm-Liouville equation to solve the
problem.

d

dω

[
h(ω)

dP

dω

]
+ [i(ω) + λj(ω)]P = 0,

where i = 0, j = 1. We suppose ω = cos θ and h(ω) = 1− ω2, then Eq. (10) is
transformed by the Sturm-Liouville equation as follow

h(ω)
d2P

dω2
− 2ω

dP

dω
+ λP = 0, λ = n(n+ 1).(22)

We consider the below initial conditions by using Rodrigues’ formula for
n = 0, 1, 3, . . . , 9, respectively:

P0(1) = 1, P ′0(1) = 0,(23)

P1(1) = 1, P ′1(1) = 1,(24)

P3(1) = 1, P ′3(1) = 6,(25)

P5(1) = 1, P ′5(1) = 15,(26)
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P7(1) = 1, P ′7(1) = 28,(27)

P9(1) = 1, P ′9(1) = 45.(28)

We suppose α = 1 and β = 2. According to definition of Caputo fractional
derivative and Eq. (11), the generalized differential transform Eq. (22) and (23)
are as follow, respectively:

P 0
1 (k + 2) = 0,

P 0
1 (0) = 1, P 0

1 (1) = 0.

Hence, we have the solution P0(ω) up to O((ω − 1)0)

P0(ω) = 1,

where O((ω − 1)0) and (ω − 1)0 are truncation error and the first term of
solution series of GDTM, respectively. By using Theorems 2.6 and 2.5 to
transform the first and second terms of Eq. (22), respectively and considering
Theorems 2.3 and 2.4 to perform the operation of addition or subtraction, than
multiplication λ by P in the mentioned equation, respectively, we obtain the
generalized differential transform of Eq. (22) and initial conditions (24)-(28)
for n = 1, 3, . . . , 9 as follow

(29)
P 1

1 (k + 2) = 2
Γ(k + 1)

h(x)Γ(k + 3)

[
ω

Γ(k + 2)

Γ(k + 1)
P 1

1 (k + 1)− P 1
1 (k)

]
,

P 1
1 (0) = 1, P 1

1 (1) = 0,

(30)
P 3

1 (k + 2) =
Γ(k + 1)

h(x)Γ(k + 3)

[
2ω

Γ(k + 2)

Γ(k + 1)
P 3

1 (k + 1)− 12P 3
1 (k)

]
,

P 3
1 (0) = 1, P 3

1 (1) = 0,

(31)
P 5

1 (k + 2) =
Γ(k + 1)

h(x)Γ(k + 3)

[
2ω

Γ(k + 2)

Γ(k + 1)
P 5

1 (k + 1)− 30P 5
1 (k)

]
,

P 5
1 (0) = 1, P 5

1 (1) = 0,

(32)
P 7

1 (k + 2) =
Γ(k + 1)

h(x)Γ(k + 3)

[
2ω

Γ(k + 2)

Γ(k + 1)
P 7

1 (k + 1)− 56P 7
1 (k)

]
,

P 7
1 (0) = 1, P 7

1 (1) = 0,

and

(33)
P 9

1 (k + 2) =
Γ(k + 1)

h(x)Γ(k + 3)

[
2ω

Γ(k + 2)

Γ(k + 1)
P 9

1 (k + 1)− 90P 9
1 (k)

]
,

P 9
1 (0) = 1, P 9

1 (1) = 0.

Considering k = 0, 1, 2, . . . for each n in Eq. (29)-(33) at once and substitut-
ing the above coefficients instead of Fα(k) and ω0 = 1 (because of initial θ = 0)
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instead of x0 in Eq. (13) at the second, we obtain the Legendre polynomials
P1(ω), P3(ω), . . . , P9(ω) as follow

P1(ω) = 1−
( 1

h

)
(ω − 1)2 −

( 2ω

3h2

)
(ω − 1)3 +

( 1

6h2
− ω2

3h3

)
(ω − 1)4,(34)

P3(ω) = 1−
( 6

h

)
(ω − 1)2 −

(4ω

h2

)
(ω − 1)3 +

( 6

h2
− 2ω2

h3

)
(ω − 1)4,(35)

P5(ω) = 1−
(15

h

)
(ω − 1)2 −

(10ω

h2

)
(ω − 1)3 +

( 75

2h2
− 5ω2

h3

)
(ω − 1)4,(36)

P7(ω) = 1−
(28

h

)
(ω − 1)2 −

(56ω

3h2

)
(ω − 1)3 +

(392

3h2
− 28ω2

3h3

)
(ω − 1)4,(37)

P9(ω) = 1−
(45

h

)
(ω − 1)2 −

(30ω

h2

)
(ω − 1)3 +

(675

2h2
− 15ω2

h3

)
(ω − 1)4.(38)

It should be noted that including more components of the series solution re-
sults in increasing errors. Therefore, we consider the solution Pn(ω) up to
O((ω − 1)4). Also, setting θ = 0 results in changing of Eq. (22). In fact, we
can’t consider it as Strum-Liouville equation. Setting the above equations in
Eq. (20) we obtain the solutions of the Laplace equation by using GDTM for
θ ∈ [0.1745329252, 1.570796327] as follow

u(1, θ) = 55 +
165

2

[
1−

( 1

h

)
(ω − 1)2 −

( 2ω

3h2

)
(ω − 1)3 +

( 1

6h2
− ω2

3h3

)
(ω − 1)4

]
− 385

8

[
1−

( 6

h

)
(ω − 1)2 −

(4ω

h2

)
(ω − 1)3 +

( 6

h2
− 2ω2

h3

)
(ω − 1)4

]
+

605

16

[
1−

(15

h

)
(ω − 1)2 −

(10ω

h2

)
(ω − 1)3 +

( 75

2h2
− 5ω2

h3

)
(ω − 1)4

]
− 4125

128

[
1−

(28

h

)
(ω − 1)2 −

(56ω

3h2

)
(ω − 1)3 +

(392

3h2
− 28ω2

3h3

)
(ω − 1)4

]
+

7315

256

[
1−

(45

h

)
(ω − 1)2 −

(30ω

h2

)
(ω − 1)3 +

(675

2h2
− 15ω2

h3

)
(ω − 1)4

]
,(39)

where θ is shown in Radian. Table 1 shows a comparison of the approximate
of the Legendre polynomial of degree 9 by using GDTM, Rodrigues’ formula,
RKF45 and Taylor’ series methods. RKF45 is a Fehlberg fourth-fifth order by
using Runge-Kutta method [4,5]. Figure 2 shows the approximate and error of
the methods for θ ∈ [0.01745329252, 0.1745329252]. GDTM is not suitable in
the first limited interval. Also, Figures 3 and 4 show that the values of GDTM
are closer to the ideal potential that is 110V and includes the least error. As
we know, the potential reduces considerably when we approach to isolation
and error increases subsequently. Figure 4 shows that the potential of GDTM
decreases as same as RKF45 and Taylor’s series.
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Figure 2. Comparison GDTM with other methods (b) error
in θ ∈ [0.01745329252, 0.1745329252].

Figure 3. Comparison GDTM with other methods (b) error
in θ ∈ [0.1745329252, 1.396263402].

Figure 4. Comparison GDTM with other methods (b) error
in θ ∈ [1.396263402, 1.553343034].
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Table 1. Comparison GDTM with other methods in θ ∈
[0.1745329252, 1.396263402].

θ GDTM Rodrigues RKF45 Taylor’s series
0.1745329252 119.6395530 115.0677953 108.3734725 108.3734725
0.3490658504 112.4109645 108.7032745 82.2353712 82.2353714
0.5235987758 113.3224144 120.7591281 78.0034333 84.1951037
0.6981317008 110.2591195 122.3741211 62.2939333 68.4800347
0.8726646262 111.8103094 141.8542600 77.2680049 83.3120615
1.047197551 114.8379630 161.4808985 154.8091511 160.3441611
1.221730477 109.3999094 169.3100614 137.5806397 142.1331072
1.396263402 91.53486009 159.5602254 95.5078245 98.5605815

Conclusion

In this paper, GDTM has been used to obtain the Lagrange polynomials.
Although, variable h causes to increase the computations, the approximate
of GDTM has more accurate than previous methods. The error showed that
recent results of the Laplace equation are far from the ideal potential but the
approximate of GDTM is closer to it in the most intervals.
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