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Abstract

In this paper, we describe a method for fuzzy polynomial regression analysis for fuzzy input--output data using shape
preserving operations for least-squares fitting. Shape preserving operations simplifies the computation of fuzzy
arithmetic operations. We derive the solution using mixed nonlinear program.

Key Words : Polynomial fuzzy regression, shape-preserving operations, membership function, least-square fitting

1A £

For many years statistical linear regression has been
used in almost all field of science. The purpose of
regression analysis is to explain the variation of a
dependent variable Y in terms of the variation of
explanatory variables X as Y=AX) where AX) 1is a
linear function. The use of statistical linear regression is
bounded by some strict assumptions about the given data,
that is, the unobserved error term are mutually
independent and identically distributed. As a result, the
statistical regression model can be applied only if the
given data are distributed according to a statistical model,
and the relation between x and v is crisp.

Since Tanaka et al. in 1982 [15] proposed a study in
linear regression analysis with fuzzy model, the fuzzy
regression analysis has been widely studied and applied in
a variety of substantive areas. A collection of recent
papers dealing with several approaches to fuzzy regression
analysis can be found in [11].

Recently, Hong et all9] presented a new method to
evaluate fuzzy linear regression models for least-square
fitting where both input data and output data are fuzzy
numbers based on Diamond's[4] fuzzy linear regression
model, using shape preserving fuzzy arithmetic operations.

In statistical regression, polynomial are widely used in
situations where the response is curvilinear, because even
complex nonlinear relationships can be adequately modeled
by polynomials over reasonably small range of the
dependent variables. In contrast to fuzzy linear regression,
there have been only a few articles on fuzzy nonlinear
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regression[see[2, 3]).

Our approach to fuzzy nonlinear regression is different
in that we use the Diamond’s metric between fuzzy
numbers and we use shape preserving ( 7 y-based) fuzzy
arithmetic operations.

Since Tybased fuzzy arithmetic operations preserves
the shape of fuzzy numbers under addition and
multiplication, it simplifies the computation of fuzzy
arithmetic operations.

In this paper, using this operations, we consider fuzzy
quadratic polynomial regression for least-square fitting.
This problem is mixed nonlinear programming problem. We
derive the solution using general nonlinear programming
problem.

2. Preliminaries

A fuzzy number is a convex subset of the real line R
with a normalized membership function.
A triangular fuzzy number % denoted by
(a, a, B is defined as

I—J%"L if a—e<t<a,
a(t) = 1——'%4 if a<t<a+p,

0 otherwise ,

where a€R is the center and @>0 is the left spread,
B>0 is the right spread of z.

If o=4, then the triangular fuzzy number is called a
symmetric triangular fuzzy number and denoted by (a, a).

A L—R fuzzy number 2= 1(a, @, B Is a function
from the reals into the interval [0, 1] satisfying

R( t/—ga) for a<t<a+ B,

a(y) = L( a;t) for a—a<st<a,
0 else,
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where L and R are non-decreasing and continuous
functions  from [0, 11 to [0, 11  satisfying
LW0)=RW0)=1 and L(1)=R(1)=0.

If L=R and a= 48, then the symmetric L—L

fuzzy number is denoted (a, @) .

A binary operation T on the unit interval is said to be
triangular norm(t-norm for short) iff 7T is associative,
commutative, non-decreasing and 7(x, 1)=x for each
x=[0, 1]. Moreover, every t-norm satisfies the following
inequality,

Tla, Y<T(a, )<min(a, b)= Ty,
where,

a if b=1,
Tla, b)=10b if a=1,
0 otherwise.

The crucial importance of min(a, b),a- b, max(0,
a+b—1) and Tyla, b) is emphasized from a mathemati-
cal point of view in Ling{13] among others.

The wusual arithmetical operations of real can be
extended to the arithmetical operations on fuzzy numbers
by means of Zadeh's extension principle [16] based on a
triangular norm 7. Let A, B be fuzzy numbers of reals
line R. The fuzzy number arithmetic operations are
summarized as follows:

Fuzzy number addition @ :
(ADB)(2)=sup .., , T{A(x), B(y), (L

Fuzzy number multiplication & :
(A®B)2)=sup,.,., TNA(x), B(y).

The addition(subtraction) rule for L— R fuzzy numbers
is well known in the case of T )-based addition and then
the resulting sum is again on L— R fuzzy numbers, ie,
the shape is preserved. Diamond [4] used T ,-based
addition in his paper. It is also known that 7 ybased
addition preserves the shape of L— R fuzzy numbers [12,
14]. In practical

computation, it is natural to require the preserving the
shape of fuzzy numbers during the multiplication. Of course,
we know that T,-based multiplication does not preserve
the shape of L - R fuzzy numbers. But it is known by
Hong and Do [7] that T induces shape preserving
multiplication of L— R fuzzy numbers. Recently, Hong [6]
showed that 7T is the unique #-norm which induces
shape preserving in multiplication of L— R fuzzy numbers.

In [9], Hong et al. used Ty based fuzzy arithmetic
operations.

Let A,=(a;, a); and X ;=(x4 7).,

i=1, 2, =, n, j=1, 2, -, p.

Then the membership function of ¥,=( A,® X ;)
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D( 4,80 X ) B A,Q X ;) is given by
Yiz( glaix i» Mmax 1s,-s,,(|a,-|7 i lx ,‘,‘lﬂ',‘))L. (2)

Let B, i=1, 2, =+, n be fuzzy number. Define

21 B;= B,®--@ B,. A possibilistic quadratic

polynomial systems whose parameter is defined as
T-F(ARXS T (A, @XOX) (3)

where A={2A,, A, I</<p, 1<I<k<p} is a fuzzy
parameters and X= (X,---, X,) is a fuzzy vector.
Using Ty~based arithmetic operations, we have the

following lemma by (2).

PI'OpOSitiOIl 2.1 Let 71,~=(a,—, Q')')L,, A Lk (a Lks
77 - Then the possibilistic quadratic

A4;,, A4,,and

@ and X;=(x;,

polynomial function with fuzzy parameter

fuzzy variables X, j=1,2, --,p,
1<I<k<p is given by

T=( ;2:1 ap;t 1s§kspa LK
max {max ;<27 ax}), 4
max (@ dx il la, drixd.la  dlxdrd D) L.

3. Fuzzy polynomial regression

In this section, we consider fuzzy quadratic polynomial
regression model for least-square fitting.

Let F,x(R) be the set of all L— R fuzzy numbers.

In order to solve fuzzy least squares optimization
problem in F;,(R), we use the metric D ,, which is

defined as distance on triangular fuzzy numbers by
Diamond [4] as follows:

D Ay, 212)2=(‘11_az)2'|' (5)
({a,— ) —(az— &)+ ((ay+ B) —(ay 4 By))*

A,=(a;,a,,B) 1r, As=1C(ay, a5, 89 1z
Hong et al.[8] considered the following model :

where

(H): Y=2A28(BRX)

where A, B, X, Ye F z(R).
In this section, we consider the following model:

(P : Y= 3(24,0X)® 6)
1B A ® X B X

where A;, A,,, X, YE F ;(R),1</<p,
1<i<k<p.

We assume, throughout this section, that A, A
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X, Ye F z(R) are symmetric L— R fuzzy
numbers for computational simplicity.
Suppose that observations consist of data pairs

(X, Y, i=1, 2, =, n, where X;= ( X,
X,

X=(xz v ;=10 Fi=,n)..
Each is to be fitted to the data in the sense of best fit

with respect to the D ;p—metric. In association with the

model (P), consider the least-squares optimization problem
( D): Minimize

Ha0)= B D E( A0 X,) @

@ 1s§ksp( A I, Ie® X i1® X ik)v Yz)

Let A;=(a;a),
then by (4)

and A, =@, p,a, P,

D 14l g}la,-x it B, @ L i AR {

max q<<la,l7 a,lx AV max | opepepla g, le i

I 4l la l,kb’i/{x al.la . dxdr P, YD)

= ]ﬁlalx 5t ]S?;kspa L% % p— max {

max << (la;ly 5 ajx Jf), max <cpe (@4l il g,
la  d7 dx ol e idy i} —(vi— 2)1?

+( 21“?‘ it 1<§kgpa L% i T max {

max 1Sjsp(ldj]7’,~,-, aj'x ijl), max 1slskgp(a z‘klxnlka
la 1_kl7' ,‘1{-75 ,'kl,la 1_k“x t‘[l?’ ik)} - (.Vi+ 7/{)]2

—_y12
+[f§1a"x it 1s§k$pa L Yile
This problem can be proved by QP problem as follows;

Let M=A{(j, L hI1<j<p,1<I<k<p}, and define

AG (G, Lk, H)
={((a, ap. . (a,,a,),(a a1,

_plpt3)
max (lajh’ i lx ijlaj’ a I,Ielx Alx 4. la i A7
Ix 4. la I.k”x Ay W=H)}

where Hy=a;7;, 4,20, Hy=—a;7; a0,
Hy=lx  a; Hy=a dx flx ), Hs= a7 dx i,
a =20, He=—a,,7 x4, a,<0,
H7:al,k|xi[|7ikv a 420, Hg:“dl,dxi/l?'ﬂn
a ;,<0.
Let f and g be functions such that

F: L2, n} — M,
g: M — {H,H,, - Hyg}.

On élA(i,f(i),g(ﬂi))) , (7) is a QP problem and

Min Ha, @)=Min ; Min Aa,a).

(a. @)= (AGAD LA

For example, let »n=2, p=2 in (7). Then the

model can be written as

*

Y,‘ ‘_“( A1‘® X,])@( A{@ X{l)
S 4,7 X, Xy)
D AL,QX,;® Xy

@( A2,2*® X,Q@ XQ)
and M={(1,1,1),(1,1,2),(1,2,2),(2,1,1),
(2,1,2),(2,2,2)}. Let £:{1,2}>M be
AD=(1,1,2), A2)=(2,1,1) and let
g:M—{H, H ---,Hg} be such that

gA)) = &((1,1,2)=H;, 2(A2))=2((2,1,1))
= H,. Then, on A(1,A1),g(A1))

MA(2,/A2),8(A2)), (7) is written as

such that

Minimize
2
Aaa) =L0zamt | 2 80w
— a7 plxpl = (n— 7)1°
2
+1 (}Zla,-x uT 1s§ks2a 1 #X 1K 1)
+a 7l = v+ 21
2
— v )]?
+[(]2=:1aj‘x ut 1s§ksza L@ 1) — ¥l

2
+[(§la;x 9t 1s§ksza 18 2 o) — X play

2
- (yz_ 772)]2+ [( ]Zla;'x Ty 1s§ks2a 1 #X 2 Zk)
2
+x zzlaz_(yZ+ 7/2)]2+ [( ;‘a,'x 2

L2
+ 1s§ks2‘l LE 2% o) — Y17,

laly n<a, o7 plx o, lxplay<a, 57 ulx gl
@y olxullx pl<a oy plx gl a4 220,
@ olx yly p<ay oy ulr gl

lagly p=<Ix play, @ lxgllx ol <lx plag,
la | llx gly o =<l polers,

which is a QP problem with respect to «;, ¢,
=12, 1< i<k<2.

Now we consider all such functions f and g and take
minimum with regard to them. Then we get the desired
solution.

Example. We consider the same artificial data shown in
Table 1 in [8].

Q1 Apw

Table 1. Fuzzy Input-Output Data of Nonlinear Type

Sarmple number 7 Xi=(x;, 7) Y,=(y,e)
1 (1.0, 0.5) (6.3, 2.0)
2 (1.5, 0.5) (11.5, 1.5)
3 (2.0, 1.0) (20.0, 2.0)
4 (3.0, 1.0) (24.0, 1.5)
5 (4.0, 1.0 (26.1, 1.0)
6 (4.5, 0.5) (30.0, 3.0
7 (5.0, 1.5) (338, 2.5)
8 (6.5, 1.0) (34.0, 3.0)
9 (6.0, 2.0) (38.1, 2.5)
10 (15.0, 1.0) (219, 1.5
11 (6.5, 1.5) (39.9, 3.0)

573



HX H XsAIAH &5 2003, Vol. 13, No. 5

Sample number 7 Xi=(x;,7) Y=y, e)
12 (7.0, 2.5) (420, 1.5)
13 (8.0, 2.0) (46.1, 2.0)
14 (9.0, 3.0) (531, 4.0
15 (10.0, 2.00 (52.0, 5.0)
16 (11.0, 2.0) (525, 35
17 (12.0, L.OY (48.0, 3.0)
18 (13.0, 1.0 (42.8, 2.5)
19 (14.0, 1.0 (27.8, 2.0

Noting that

A,B( A0 X)B( 4,0 X))
=(ay+ax;+ ay,

max{ag, la)| 7, ayx;, laslxy;, ax?))
we minimize

19
ra,a) = Z}( [(ay+a x;+ a,x) —
&
max(ao, |a1|7,-, a\x;, |a2|xi}'i, arzx%)
— (= )P+ (ap+ ayx;+ayxd) +
max (g, la)|7;, a\x;, lagx7;, anx?)
— (A 2P+ (ay+ayx;+ ayd) — v]1%)
Ray, ay, ay)
19
= 21[2(610 + ayx;+ a,x2)?
&
+(y— 2%+ (vt 2)? —2(ag+ ayx,+ ayx?)
(yi_ 7]{) - 2([20+ dlx,--i- dzx%)(yi—l- ;7}.)
+[(ag+ a x;+ ayx®) — v,]%]
Ha, @)= Ray, ay, ay)
19
+ ,Zl {2l max (ay, la)ly;, @x; laglx;y;, apx®)]?

—4pmax(ay, lalr;, ayx;, layx 7, axd}

dr _ _of

day day
= z§1[4(ao+ ayx;+ ax?) = 2(yi— 1)
—2(y;+ 79 +2(ay+ ayx;+ axi—y)]
=6 ﬁl(ao +axi+ api—y)

19 19 19
= ﬁnao+6al Izlxi+ 6a2 ;lxz,—G lZlyi’
_37’2 .Liﬁ =6n

2 2
%ay d°ay

So a solution for @ is given by the solution aj to the

equation
19
) - L2
ay=v— a;x— a,x°, where y= 9
19 1,
- Ig!xi d v lglxz
ST R T
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Figure 1. The Fuzzy Linear Regression Model

Figure 2. The Fuzzy Quadratic polynomial
Regression Model

Then the solution for fuzzy linear regression model is
A, =(21.474,2), A,"=(1.75,0.13) with

Ha*,a") =(7161.78) and the
polynomial regression model is

A, =(12.035, 0~0.47), A," =(5.66,0~0.35),
A, =(—0.27,0.02) with #(a",a")=(4649.995).

solution for fuzzy

In Fig. 1 and Fig. 2, the 19 pairs of dots are

(x;,yite),i=1,2,---,19. The curve and two broken
curves are loci of the membership function of the fuzzy
linear regression model and fuzzy polynomial regression

— 19
model, where & is Zly,-/19.

As you can see Fig.l and Fig. 2, both fuzzy linear
regression model and fuzzy polynomial regression model
don't fit well. But fuzzy polynomial regression model fits
better than fuzzy linear regression model. We need to
study about detection of outliers or develop other types of
non-linear fuzzy regression model with fuzzy input-output
data.

4. Conclusion

We suggested fuzzy quadratic polynomial regression for
least-square fitting using shape preserving operations. We
use general nonlinear programming problem to derive the
optimal solutions. An artificial example is given.



Fuzzy least squares polynomial regression analysis using shape preserving operations

References

(11 A. Bardossy, R. Hagaman, L. Duckstein and I
Bogardi, Fuzzy least squares regression . Theory
and application(“Fuzzy Regression Analysis” J.
Kacprzyk and M. Fedrizzi(eds), 1992 Omnitch
Press, Warsaw and Physica-Verlag, Heidelberg,
181--193).

[2] J. Buckley and T. Feuring, Linear and non-linear
fuzzy regression: Evolutionary algorithm solutions,
Fuzzy Sets and Systems, vol. 112, pp. 381-394,
2000.

[31 A. Celmins, Apractical approach to nonlinear fuzzy
regression, SIAM. ]. Sci. Stat. Comput., vol. 12.
No. 3. pp. 521-546, 1991.

[4] P. Diamond, Fuzzy least squares, Inform. Sci. vol.
46, pp. 141-157, 1998.

[5] P. Diamond and R. Kémer, Extended fuzzy linear
models and least square estimates, Computers
Math. Applic. vol. 33, pp. 15-32, 1997.

[6] D. H. Hong, Shape preserving multiplication of
fuzzy numbers, Fuzzy Sets and Systems vol. 123,
pp. 93-96, 2000.

[7]1 D. H. Hong and H. Y. Do, Fuzzy system reliability
analysis by the use of T,{ the weakest t-norm)

on fuzzy number arithmetic operations, Fuzzy
Sets and Systems, vol. 90, pp. 307-316, 1997.

[8] D. H. Hong and H. Y. Do, Fuzzy polynomial
regression analysis using shape preserving
operation, Korean J. of Comput. and App. Math,,
vol. 8, pp. 645656, 2001.

[9] D. H. Hong , S. Lee and H. Y. Do, Fuzzy linear
regression analysis for fuzzy input-output data
using shape-preserving operations, Fuzzy Sets and
Systems, vol. 122, pp. 157-170, 2001.

[10] D. H. Hong, J. K. Song and D. H. Hong, Fuzzy
least-squares linear regression analysis using
shape preserving operations, Information Sciences,
vol. 138, pp. 185-193, 2001.

[11] J. Kacprzyk and M. Fedrizzi, Fuzzy Regression
Analysis{Physica-Verlag, Heidelberg, 1992).

[12] A. Kolesarova, Additive preserving the linearity
of fuzzy intervals, Tetra Mountains Math. Publ
vol. 6, pp. 75-81, 1995.

[13} C. H. Ling, Representation of associative functions,
Publ. Math. Debrecen, vol. 12, pp. 189-212, 1965.

[14] R. Mesiar, Shape preserving additions of fuzzy
intervals, Fuzzy Sets and Systems, vol. 86, pp.
73-78, 1997.

[15] H. Tanaka, S. Uejima and K. Asai, Linear regression
analysis with fuzzy model, IEEE Trans. Systems
Man Cybernet. pp. 903-907, 1982.

[16] L. A. Zadeh, Fuzzy sets, Inform. Control, vol. 8,
pp.338-353, 1965.

x A} 2~ |

&9 8 M 124 65 &=

2 & 8

1978~ 1982 AR st Sofags olsha}
1982~ 1984 A& ojeti ANEA sk EA % A

1985~1987 $t5%4 AddT¢

1987~1991 W)= Michigan W&t EA4sta (kAh
1992~199% ZAduistn ANEA s} zus
1995~ @A 7HE sty REA S T

=
199402 (%) hs7yEdoiela Bt s}
199602 () ohFrtEedsta AEAST

o) 84}

200008 (&) ZEdistn A} o]shal

575



