• Title/Summary/Keyword: Solution and precipitation

Search Result 818, Processing Time 0.028 seconds

Titanium Dioxide Recovery from Soda-roasted Spent SCR Catalysts through Sulphuric Acid Leaching and Hydrolysis Precipitation (소다배소 처리된 탈질 폐촉매로부터 황산침출과 가수분해 침전반응에 의한 TiO2의 회수)

  • Kim, Seunghyun;Trinh, Ha Bich;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.48-54
    • /
    • 2020
  • Sulphuric acid (H2SO4) leaching and hydrolysis were experimented for the recovery of titanum dioxide (TiO2) from the water-leached residue followed by soda-roasting spent SCR catalysts. Sulphuric acid leaching of Ti was carried out with leachate concentration (4~8 M) and the others were fixed (temp.: 70 ℃, leaching time: 3 hrs, slurry density: 100 g/L, stirring speed: 500 rpm). For recovering of Ti from the leaching solution, hydrolysis precipitation was conducted at 100 ℃ for 2 hours in various mixing ratio (leached solution:distilled water) of 1:9 to 5:5. The maximum leachability was reached to 95.2 % in 6 M H2SO4 leachate. on the other hand, the leachability of Si decreased dramatically 91.7 to 3.0 % with an increase of H2SO4 concentration. Hydrolysis precipitation of Ti was proceeded with leaching solution of 8 M H2SO4 with the lowest content of Si. The yield of precipitation increased proportionally with a dilution ratio of leaching solution. Moreover, it increased generally by adding 0.2 g TiO2 as a precipitation seed to the diluted leaching solution. Ultimately, 99.8 % of TiO2 can be recovered with the purity of 99.46 % from the 1:9 diluted solution.

Effect of Precipitation Temperature and Solution pH on the Precipitation of Ammonium Metavanadate (침전온도 및 수용액 pH가 암모늄메타바나데이트 침전반응에 미치는 영향)

  • Heo, Seo-Jin;Kim, Rina;Chung, Kyeong Woo;Jeon, Ho-Seok;Kim, Chul-Joo;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.3-11
    • /
    • 2021
  • In this study, the effect of the solubility of ammonium metavanadate and the decomposition ratio of ammonium ions on a precipitation reaction-the precipitation of ammonium metavanadate by adding ammonium chloride to a sodium vanadate solution-was investigated. As the precipitation temperature and pH increased, the decomposition ratio of ammonium ions increased, and the decomposition ratio was greater than 81% at 45 ℃ and pH 9.3. This was approximately four times higher than that at pH 8. The result of the precipitation reaction, in view of these two factors that significantly influence the precipitation reaction, was that the precipitation yield increased as the temperature increased. However, the effect of temperature was not significant above 35 ℃. A kinetic study of the precipitation reaction revealed that the activation energy of the reaction was 42.3 kJ/mol. Therefore, considering the solubility of ammonium metavanadate, the lower the temperature, the better the vanadium recovery yield. Additionally, considering the decomposition of ammonium ions, the lower the pH of the aqueous solution, the more advantageous. However, at pH 8 or less, sodium polyvanadate is precipitated and the purity of vanadium oxide may reduce.

Evaluation of Na2CO3-H2O2 Carbonate Solution Stability (Na2CO3-H2O2 탄산염 용액의 안정성 평가)

  • Lee, Eil-Hee;Lim, Jae-Gwan;Chung, Dong-Yong;Yang, Han-Beum;Kim, Kwang-Wook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.131-139
    • /
    • 2011
  • This study was carried out to examine the stability of $Na_2CO_3-H_2O_2$ carbonate solution with aging time in the dissolving solution after oxidative dissolution of U by a carbonate solution, the Cs/Re filtrate after selective precipitation of Cs and Re (as a surrogate for Tc), and the acidification filtrate after precipitation of U by acidification, respectively. The compositions of dissolving solution were not changed with ageing time, and the selective precipitation of Re and Cs was also not affected without regard to the aging time of dissolving solution. The successive removal of Cs and Re from a carbonate dissolving solution was possible. However, the recovery yield of U by acidification was decreased with increasing the aging time of the dissolving solution and the Cs/Re-filtrate, respectively, because U was converted from the uranyl peroxocarbonato complex to the uranyltricarbonate in the solution aged for a long time. Accordingly, it is effective that a dissolving solution and a Cs/Re filtrate are treated within the aging of 7 days, respectively, in order to recover U more than 99%. On the other hand, the recovery of U was carried out in order of the oxidative dissolution of U selective precipitation of Re and Cs precipitation of U by acidification. Almost all of U and a part of FP were co-dissolved in oxidative dissolution step. Over 99% of Re and Cs from the FP co-dissolved with U could be removed by a TPPCl (tetraphenylphosphonium chloride) and a NaTPB (sodium tetraphenylborate), respectively. U was precipitated nearly 100% by acidification to pH 4. Therefore, it was confirmed that the validity of recovery of U by precipitation methods from a SF (spent fuel) in the $Na_2CO_3-H_2O_2$ solution.

The effect of precipitation conditions on the particle size and size distribution of zinc oxide prepared by high temperature precipitation (고온침전반응에 의한 산화아연 제조공정에서 입자의 형상 및 입도분포에 미치는 침전조건의 영향)

  • 주창식
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.16 no.2
    • /
    • pp.11-22
    • /
    • 1998
  • For the purpose of preparation of monodispersed spherical zinc oxide fine particles, an experimental research on the preparation of zinc oxide particles from zinc salts solutions by high temperature precipitation reaction was performed. Zinc oxide particles were precipitated from all the precipitation solutions tested if the precipitation temperature was higher than 60$^{\circ}$. As the precipitation temperature Increased until 80$^{\circ}$, the average particle diameter of zinc oxide particles decreased and the narrower particle size distribution were obtained. Spherical zinc oxide fine particles with relatively narrow particle size distribution were precipitated from the ZnSO$_4$ solutions with NaOH as precipitant. Final pH of precipitation solution had an effect on the amount of zinc oxide precipitated, but had no effect on the their particle size or size distribution.

  • PDF

Synthesis, Characterization and Functionalization of the Coated Iron Oxide Nanostructures

  • Tursunkulov, Oybek;Allabergenov, Bunyod;Abidov, Amir;Jeong, Soon-Wook;Kim, Sungjin
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.180-185
    • /
    • 2013
  • The iron oxides nanoparticles and iron oxide with other compounds are of importance in fields including biomedicine, clinical and bio-sensing applications, corrosion resistance, and magnetic properties of materials, catalyst, and geochemical processes etc. In this work we describe the preparation and investigation of the properties of coated magnetic nanoparticles consisting of the iron oxide core and organic modification of the residue. These fine iron oxide nanoparticles were prepared in air environment by the co-precipitation method using of $Fe^{2+}$: $Fe^{3+}$ where chemical precipitation was achieved by adding ammonia aqueous solution with vigorous stirring. During the synthesis of nanoparticles with a narrow size distribution, the techniques of separation and powdering of nanoparticles into rather monodisperse fractions are observed. This is done using controlled precipitation of particles from surfactant stabilized solutions in the form organic components. It is desirable to maintain the particle size within pH range, temperature, solution ratio wherein the particle growth is held at a minimum. The iron oxide nanoparticles can be well dispersed in an aqueous solution were prepared by the mentioned co-precipitation method. Besides the iron oxide nanowires were prepared by using similar method. These iron oxide nanoparticles and nanowires have controlled average size and the obtained products were investigated by X-ray diffraction, FESEM and other methods.

Dispersion Characteristics of Zinc Oxide Nanoparticles in Ionic and Non-ionic Isotonic Solution (이온성 및 비이온성 등장액 용매에서 산화아연나노입자의 분산 특성)

  • Choi, Jonghye;Kim, Hyejin;Park, Kwangsik
    • YAKHAK HOEJI
    • /
    • v.57 no.4
    • /
    • pp.282-288
    • /
    • 2013
  • Zinc oxide nanoparticles (ZnONPs) are widely used in a variety of products and cosmetic products including paper, paints, plastics and sunscreen. However, information on the safety of ZnONPs are not enough and many publications suggest possible toxic effects on environmental and human health. Furthermore, physico-chemical characteristics of nanoparticles makes it hard to test toxicity using the test guidelines of chemicals adopted by regulatory bodies. In this study, stability of ZnONPs was investigated using different types of isotonic solution, which is important in the toxicity study of intravenous route. Precipitation, aggregation, size, zeta potential and morphology of ZnONPs were evaluated with different times and concentrations. Precipitation of ZnONPs were observed in ionic isotonic solution including phosphate-buffered saline, Kreb's-Ringer solution, physiological salt solution and cell culture media of DMEM (Dulbecco's Modified Eagle's Medium) with 10% fetal bovine serum. On the other hand, they were stable without precipitation in non-ionic isotonic solution such as 5% glucose and 2% glycerol, respectively, which are biocompatible for intravenous injection. The average size of ZnONPs in 5% glucose and 2% glycerol was stably maintained, which is less than 30 nm and very similar as that in water dispersion of ZnONPs, provided by the manufacturer. The stability was maintained during the experimental period of 5 days and diluted state up to 15,000 ppm. These data suggest that 5% glucose and 2% glycerol solution can be used for the vehicles of ZnONPs in the toxicity study of intravenous injection route.

A Study on the Precipitation Behavior of Disordered ${\gamma}$ Phase in an $L1_2$ Ordered ${\gamma}^{\prime}-Ni_3(Al,Ti)$ Phase ($L1_2$${\gamma}^{\prime}-Ni_3(Al,Ti)$ 규칙상 중에 불규칙 ${\gamma}$상의 석출거동에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.5
    • /
    • pp.249-256
    • /
    • 2006
  • Structural studies have been performed on precipitation hardening found in $L1_2$ ordered ${\gamma}^{\prime}-Ni_3(Al,Ti)$ alloys using transmission electron microscopy. A uniform solid solution of ${\gamma}^{\prime}-L1_2$ ordered phase supersaturated with Ni can be obtained by solution annealing in a suitable temperature range. The ${\gamma}^{\prime}$ phase hardens appreciably by the fine precipitation of disordered ${\gamma}$. The shape of ${\gamma}$ precipitates formed during aging is initially spherical or round-cubic and grow into platelets as aging proceeds. High resolution electron microscopy revealed that the ${\gamma}$ precipitates are perfectly coherent with the matrix ${\gamma}^{\prime}$ as long as the ${\gamma}$-precipitates are plates. The loss of coherency initiates by the introduction of dislocations at the ${\gamma}/{\gamma}^{\prime}$ interface followed by the step formation at the dislocations. The ${\gamma}$ precipitates become globular after the loss of coherency. The strength of ${\gamma}^{\prime}-Ni_3(Al,Ti)$ increases over the temperature range of experiment by the precipitation of fine ${\gamma}$ particles. The peak temperature where a maximum strength was obtained shifted to higher temperature.

Bioactivity behavior of biphasic calcium phosphate powders prepared by co-precipitation method (공침법으로 합성된 biphasic calcium phosphate 분말의 생체활성 거동)

  • Kim, Tae-Wan;Kim, Dong-Hyun;Jin, Hyeong-Ho;Lee, Heon-Soo;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.2
    • /
    • pp.99-104
    • /
    • 2012
  • The co-precipitation technique has been applied to synthesize biphasic calcium phosphate (BCP). $Ca(NO_3)_2{\cdot}4H_2O$ and $(NH_4)_2HPO_4$ as the starting materials was used. X-ray diffraction (XRD) and Fourier transformed infrared (FT-IR) spectroscopy were used to characterize the structure of as-synthesized and calcined BCP powders. After immersion in Hanks' Balanced Salt Solution (HBSS), for 1 week a precipitation started to be formed with individual small granules on the specimen surface. An MTT assay indicated that BCP powders have no cytotoxic effects on MG-63 cells, and that they have good biocompatibility.

Leaching and precipitation of Vanadium in ammoniacal solution (암모니아 용액중(溶液中)에서 바나듐의 용해(溶解)와 침전거동(沈澱擧動))

  • Park, Kyung-Ho;Kim, Hong-In;Lee, Jin-Young
    • Resources Recycling
    • /
    • v.17 no.1
    • /
    • pp.38-42
    • /
    • 2008
  • This study was carried out to investigate the solubility of vanadium in ammoniacal solution and precipitation of $NH_4VO_3$ as a function of temperature and addition of ammonia salt. Higher solution temperature is required to get high solubility of vanadium and the vanadium concentration of solution was 16.8g/L at $90^{\circ}C$ with the solution of 20 g/L $(NH_4)_2CO_3$ and 2.5M $NH_4OH$. From this solution, vanadium could be precipitated up to 99.8% with adding 20 g/L $NH_4Cl$, 72 hours settling time at $25^{\circ}C$.

Formation of Solution-derived Hydroxyapatite Layer on the Surface of a Shell (용액 반응에 의한 패각 표면의 수산화아파타이트 층 생성 거동)

  • Kim, Hui-Lae;Song, Tae-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1177-1182
    • /
    • 2002
  • Highly surfaced and porous hydroxyapatite body was artificially formed on the surface of a shell through a reaction with phosphatic solutions. As a result of qualitative observation, hydroxyapatite seemed to be crystallized by solution-precipitation process accelerated by the nucleation surface of a shell. The process of formation of hydroxyapatite layer was as follows. 1. Dense nucleation and growth on the surface of solid phase 2. Formation of microporous layer by contact and entanglement between crystallines 3. diffusion of solution through the porous layer and thickness growth of layer towards inside