• Title/Summary/Keyword: Solution Plasma

Search Result 735, Processing Time 0.025 seconds

Hair Loss Treatment Using Erbium:YAG Fractional Laser with Hair Growth-promoting Solution

  • Ahn, Dong Hyun
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.176-180
    • /
    • 2021
  • Several methods have been used to treat androgenetic hair loss, ranging from hair transplants to finasteride and minoxidil. Sometimes platelet-rich plasma injection therapy may be used to increase the satisfaction of patients who come to the hospital. However, some patients are sensitive to pain and are subjected to the inconvenience of requiring treatment after each blood sampling. The author had reported the effects of using a hair growth-promoting solution and JetpeelTM in parallel with a painless hair loss treatment method. However, the author was interested in more effective methods for patients with M-shaped or vertex hair loss who do not want to take medications or undergo hair transplant. In addition to the existing light-emitting diode therapy and electromagnetic field treatment, the author has made considered attempts to use various laser wavelength bands. However, the equipment for these methods can be expensive and are not suitable for patients who emphasize on cost-effectiveness. Therefore, the author used an existing reported method and a device based on the fractional erbium:YAG laser to provide the hair growth-promoting solution in parallel. The author chose a fractional 2940 nm-based laser device as a medium that could efficiently increase the growth phase, reduce the catagen phase, and facilitate intradermal product and drug delivery. As a result, there was a therapeutic benefit without any significant side effects such as redness and itching. Among the patients, the author reported the effects of the treatment on one patient with frontal M-shaped, mid, and vertex hair loss.

Characteristics of NH3 Decomposition according to Discharge Mode in Elongated Rotating Arc Reactor (신장 회전아크 반응기에서 방전모드에 따른 암모니아 분해특성)

  • Kim, Kwan-Tae;Kang, Hee Seok;Lee, Dae Hoon;Jo, Sung Kwon;Song, Young-Hoon;Kim, In Myoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.356-362
    • /
    • 2013
  • An attempt has been made to optimize elongated rotating arc plasma $NH_3$ scrubber. Among diverse semiconductor processes, diffusion and implantation process inevitably produce $NH_3$ as byproduct and efficient dry process for the decomposition of $NH_3$ is required. Plasma process does not produce NOx that is commonly produced in combustion process and there is no problem of deactivation, usually experienced in catalyst process. However, plasma process uses electrical energy and needs to be optimized to achieve feasibility of application. In this work, mode control of rotating arc is presented as tentative solution for the possible optimization of the process. Based on existing rotating arc, scale-up and following mode mapping was tried. Proposed reactor design was evaluated in the $NH_3$ decomposition process and revealed that optimization scheme is at hand. In the experiment of full scale scrubber including heat exchanger, the process gave more stable and efficient process of $NH_3$ decomposition.

Controlling Factors of Feed Intake and Salivary Secretion in Goats Fed on Dry Forage

  • Sunagawa, K.;Ooshiro, T.;Nakamura, N.;Nagamine, I.;Shiroma, S.;Shinjo, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1414-1420
    • /
    • 2005
  • The purpose of this research was to determine whether or not feeding induced hypovolemia (decreases in plasma volume) and decreases in plasma bicarbonate concentration caused by loss of $NaHCO_3$ from the blood, act to suppress feed intake and saliva secretion volumes during the initial stages of feeding in goats fed on dry forage. The animals were fed twice a day at 10:30 and at 16:00 for 2 h each time. Prior to the morning feeding, the collected saliva (3-5 kg) was infused into the rumen. During the morning 2 h feeding period (10:30 to 12:30), the animals were fed 2-3 kg of roughly crushed alfalfa hay cubes. At 16:00, the animals were fed again with 0.8 kg of alfalfa hay cubes, 200 g of commercial ground concentrate and 20 g of sodium bicarbonate. In order to compensate for water or $NaHCO_3$ lost through saliva during initial stages of feeding, a 3 h intravenous infusion (17-19 ml/min) of artificial mixed saliva (ASI) or mannitol solution (MI) was begun 1 h prior to the morning feeding and continued until the conclusion of the 2 h feeding period. The physiological state of the goats in the present experiment remained unchanged after parotid gland fistulation. Circulating plasma volume decreases caused by feeding (estimated by increases in plasma total protein concentration) were significantly suppressed by the ASI and MI treatments. During the first 1 h of the 2 h feeding period, plasma osmolality in the ASI treatment was the same as the NI (non-infusion control) treatment, while plasma osmolality in the MI treatment was significantly higher. In comparison to the NI treatment, cumulative feed intake levels for the duration of the 2 h feeding period in the ASI and MI treatments increased markedly by 56.6 and 88.3%, respectively. On the other hand, unilateral cumulative parotid saliva secretion volume following the termination of the 2 h feeding period in the ASI treatment was 50.7% higher than that in the NI treatment. MI treatment showed the same level as the NI treatment. The results of the present experiment proved that the humoral factors involved in the suppression of feeding and saliva secretion during the initial stages of feeding in goats fed on dry forage, are feeding induced hypovolemia and decrease in plasma $HCO_3^-$ concentration caused by loss of $NaHCO_3$ from the blood.

Determination of Carnitine Renal Threshold and Effect of Medium-Chain Triglycerides on Carnitine Profiles in Newborn Pigs

  • Heo, K.N.;Odle, J.;Lin, X.;van Kempen, T.A.T.G.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.2
    • /
    • pp.237-242
    • /
    • 2001
  • Colostrum deprived, newborn pigs (N=12, $1.64{\pm}0.05kg$) were used to study the renal threshold of carnitine, and effects of emulsified medium-chain triglyceride (MCT, tri-8:0) feeding on kinetics of plasma carnitine and urinary carnitine excretion. An arterial catheter was inserted through an umbilical artery, and a bladder catheter was inserted via the urachus. Piglets were oro-gastrically gavaged with one of six carnitine levels (0, 60, 120, 180, 240, $480{\mu}mol/kg\;W^{0.75}$) with (+MCT) or without medium-chain triglycerides (-MCT) in 0.9% NaCl solution. Blood was sampled into heparinized tubes at 0, 1, 2, 4, 6, 8, 14, and 20 h after gavage, and urine was collected and pooled into 1 h or 2 h composite samples to determine free- and short-chain carnitine concentrations. Plasma from the 12 newborn piglets before gavage contained $10.6{\pm}1.2{\mu}mol/L$ free carnitine and $7.2{\pm}0.6{\mu}mol/L$ acid-soluble acyl carnitine. The renal threshold for carnitine was similar between the MCT and the +MCT group (42.6 13.1 and $46.4{\pm}2.0{\mu}mol/L$, respectively), but the correlation between plasma free carnitine and urinary excretion was altered. Plasma free carnitine linearly increased with increasing carnitine dosage (-MCT group, $R^2=0.95$, p<0.001; +MCT group, $R^2=0.91$, p<0.001), but was decreased by 50% when medium-chain triglycerides were fed. The peak in plasma free carnitine concentration was depressed by medium-chain triglycerides feeding also. Therefore, the plasma and urinary short-chain/free carnitine ratio of the +MCT group was increased by 100% and 40%, respectively (p<0.01). Feeding of medium-chain triglycerides may delay plasma carnitine elevation via altering the kinetics of absorption. Similarly, the plasma and urinary short-chain/free carnitine ratio were affected by interaction between medium-chain triglycerides and time (p<0.01). The present study suggests that an oral carnitine dose over $480{\mu}mol/kg\;W^{0.75}$ may be needed to reach the free carnitine renal threshold within a short period, especially when provided together with medium-chain triglyceride.

Plasma Osmolality Controls Dry Forage Intake in Large-type Goats

  • Thang, Tran Van;Sunagawa, Katsunori;Nagamine, Itsuki;Ogura, Go
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.8
    • /
    • pp.1069-1085
    • /
    • 2011
  • In large-type goats that were fed on dry forage twice daily, dry forage intake was markedly suppressed after 40 min of feeding had elapsed. The objective of this study was to clarify whether or not increases in plasma osmolality and subsequent thirst sensations produced by dry forage feeding suppress dry forage intake. Eight large-type male esophageal- and ruminal-fistulated goats (crossbred Japanese Saanen/Nubian, aged 3 to 6 years, weighing $72.3{\pm}2.74$ kg) were used in two experiments conducted under sham feeding conditions. The animals were fed ad libitum a diet of roughly crushed alfalfa hay cubes for 2 h from 10:00 to 12:00 h during two experiments. Water was withheld during feeding in both experiments but was available for a period of 30 min after completion of the 2 h feeding period. In experiment 1, an intraruminal infusion of artificial parotid saliva (RIAPS) in the control replenished saliva lost via the esophageal fistula and an intraruminal infusion of hypertonic solution (RIHS) in the treatment was carried out in order to reproduce the effects of changing salt content due to feed entering the rumen. In experiment 2, the RIHS control was conducted in the same manner as the RIHS treatment of experiment 1. The treatment group consisted of RIHS-with an intravenous infusion of artificial mixed saliva (VIAMS) treatment that was carried out for 3 h to prevent increases in plasma osmolality during feeding. The results of the RIHS treatment in experiment 1 showed that ruminal fluid osmolality increased and then an increase in plasma osmolality was observed. This resulted in the production of thirst sensations and the reduction of cumulative dry forage intake to 43.3% (p<0.05) of the RIAPS control. The results of the RIHS-VIAMS treatment in experiment 2 indicated that ruminal fluid osmolality was the same as the RIHS control but plasma osmolality significantly decreased, and thirst level was markedly reduced. This caused a significant increase of 31.4% (p<0.05) in cumulative dry forage intake in the RIHS-VIAMS treatment compared to the RIHS control. These results indicate that increases in ruminal fluid osmolality during dry forage feeding indirectly suppresses dry forage intake by causing an increase in plasma osmolality and subsequently inducing thirst sensations. The results of the present study suggest that marked decreases in dry forage intake after 40 min of feeding are caused by increases in plasma osmolality and subsequent thirst sensations produced by dry forage feeding.

Development and spectroscopic characteristics of the high-power wave guide He Plasma (도파관식 고출력 헬륨 플라즈마의 개발과 분광학적 특성 연구)

  • Lee, Jong-Man;Cho, Sung-Il;Woo, Jin-Chun;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.265-272
    • /
    • 2012
  • Okamoto cavity was modified to generate high power (2.45 GHz, 2 kW) He, N2 and Ar plasmas with WR-340 waveguide. Many factors which influence to the plasma generation were optimized and investigated for the spectroscopic properties of the He plasma generated. Some of the important factors are the diameter of the inner conductor, the distance between the inner and outer conductors and the distance between the tip of the inner conductor and the torch. After optimization for the He, two torches (a commercial mini torch for ICP and a tangential flow torch made locally) were compared and showed similar results for the helium plasma gas flow of 25 L/min~30 L/min. A tall torch (extended) was used to block the air in-flow and reduced the background intensity at 340 nm region (NH band). Emission intensity was measured for determination of halogen element in the aqueous solution with power and carrier gas flow rate. Electron number density and the excitation temperature were on the order of $3.67{\times}10^{11}/cm^3$ and 4,350 K, respectively. These values are similar or a bit smaller than other microwave plasmas. It has been possible to analyze aqueous samples. The detection limit for Cl (479.45 nm) was obtained to be 116 mg/L and needs analytical optimization for the better performance.

A Study on the Removal of Cu Impurity on Si Substrate and Mechanism Using Remote Hydrogen Plasma (리모트 수소 플라즈마를 이용한 Si 기판 위의 Cu 불순물 제거)

  • Lee, Jong-Mu;Jeon, Hyeong-Tak;Park, Myeong-Gu;An, Tae-Hang
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.817-824
    • /
    • 1996
  • Removal of Cu impurities on Si substrates using remote H-plasma was investigated. Si substrates were intentionally contaminated by 1ppm ${CuCI}_{2}$, standard chemical solution. To determine the optimal process condition, remote H-plasma cleaning was conducted varying the parameters of rf power, cleaning time and remoteness(the distance between the center of plasma and the surface of Si substrate). After remote H-plasma cleaning was conducted, Si surfaces were analysed by TXRF(total x-ray reflection fluorescence) and AFM(atomic force microscope). The concentration of Cu impurity was reduced by more than a factor of 10 and its RMS roughness was improved by more than 30% after remote H-plasma cleaning. TXRF analysis results show that remote H-plasma cleaning is effective in eliminating Cu impurity on Si surface when it is performed under the optimal process condition. AFM analysis results also verifies that remote H-plasma cleaning makes no damage to the Si surface. The deposition mechanism of Cu impurity may be explained by the redox potential(oxidation-reduction reaction potential) theory. Based on the XPS analysis results we could draw a conclusion that Cu impurities on the Si substrate are removed together with the oxide by a "lift-off" mechanism when the chemical oxide( which forms when Cu ions are adsorbed on the Si surface) is etched off by reactive hydrogen atoms.gen atoms.

  • PDF

The Effect of Seasoning on the Intestinal Absorption -Absorption by Passive Transport and the Effect of Red Pepper- (조미료가 창자 운동과 흡수기능에 미치는 영향 -소장의 피동적 흡수에 대한 고추의 영향-)

  • Shin, Dong-Hoon;Kim, Joong-Soo;Koh, Jae-Pyong;Ahn, Seung-Woon
    • The Korean Journal of Physiology
    • /
    • v.7 no.1
    • /
    • pp.23-31
    • /
    • 1973
  • Numerous factors concern with the absorption of substances through the membrane of the gastrointestinal tract. To simplify the experimental condition, present work has been restricted to observe the disappearance rate of substance from the intestinal loop which was made in the jejunum, 70 cm apart from the pylorus of the adult rabbit. The purpose of the study is to clarify the absorption of urea through the jejunal wall is solely attributable to the concentration difference between the luminal fluid and plasma, and to observe the effect of adding red pepper upon the rate of absorption. The rabbits were anesthetized with nembutal, 35mg/kg I.V. Jejunal loop was made by ligating at 2 spots, 70 cm and 80cm apart from the pylorus. After rinsing with normal saline solution through the polyethylene tubing inserted from the end of the loop, 8 ml of test solution was placed through the same tubing. The test solution contained 200 mg% of urea and 150mg% of polyethylene glycol(M.W. 4,000) in normal saline solution. Right after placing the test solution the first specimen was taken through the tubing, and successive samplings were performed at 5, 10, 20, and 30 minutes. Logarithm of the difference of urea concentration between the luminal fluid and plasma was plotted against time elapsed after the onset of the experiment. If straight line is revealed, it would verify the nature of transport mechanism as diffusion, obeying the Fick's principle. The concentration of polyethylene glycol (PEG) was also measured in order to examine the change in the volume. PEG was used as the marker substance because it is not absorbable in the intestinal tract. Consequently the concentration of PEG relates inversely to the volume of the loop. Instantaneous concentration of urea in the loop times the volume will give the amount of urea remaining in the luminal fluid. The change in the amount of any substance is directly relate to the volume of the compartment and differs from the change in the concentration which is independent of the volume. After completion of the experiment without red pepper, it was added in the test solution and was centrifuged after thorough mixing. Supernatant of the mixture was placed in the loop and similar sampling were performed with the same time intervals that of previous run in order to observe the effects of the red pepper on the passive transport of the water soluble small substance, urea. The results obtained were as follows: 1. Logarithm of the concentration difference of urea between the luminal fluid and plasma was diminished exponentially as time elapsed. The decay constant in the experiment without red pepper was 0.0563/min. By adding red pepper in the test solution as much as the concentration rose to 4,000 mg% and 8,000 mg%, the decay constants were lowered to 0.0493/min and to 0.0506/min, respectively. The time interval by which the concentration difference dropped to one half of the initial value was prolonged. Without red pepper the half concentration time was 13.30 minutes, and by adding extract of red pepper, 15.31 minutes and 15.71 minutes were revealed. 2. The profile of the diminishing rate of tile amount of urea was quite different from that of the concentration because of the change in the volume of the loop during the observed period. 3. By adding the extract of red pepper, it slowed down the rate of absorption of urea in the intestinal loop, suggesting an increase in the diffusional barrier. 4. Larger dosage of red pepper brought an increase in the secretion of intestinal fluid with concomitant expansion of the luminal volume, and the retardation of the absorption of urea was noticed. This effect was largely dependent on the sensitivity of the individual animal to the red pepper, extract. The amount of urea remained after 10 minutes interval was 55.5% of the initial amount in the experiment without red pepper. On the other hand it was not consistent after administration of red pepper, showing 50.6% and 66.5% of the initial figures by adding 400 mg and 800 mg of red pepper in the test solution, respectively. It was postulated that symptom of diarrhea often encountered by taking a hot (red pepper) food might be attributable to the increase of secretion and the retardation of absorption in the intestinal tract.

  • PDF

Antibacterial Effect of Gelatin/Ag Nanoparticle Biocomposite Prepared Using Solution Plasma Generated by Unipolar DC Power (단극성 직류전원으로 유도된 용액 플라즈마를 이용하여 제조한 젤라틴/은 나노입자 생체복합재료의 항균 효과)

  • Kim, Seong-Cheol;Yoon, Gook-Jin;Nam, Sang-Woo;Lee, Sang-Yul;Kim, Jung-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.403-408
    • /
    • 2012
  • Gelatin/Ag nanoparticle (AgNP) biocomposite was synthesized using the solution plasma process (SPP) that has been recently introduced as an effective method for synthesis of nanoparticles. In this study, gelatin/AgNP biocomposite was synthesized using various concentrations of Ag precursor ($AgNO_3$) and gelatin in the range of 1-5 mM and 1-3% (w/w), respectively, without using any chemical reducing agent. Physical properties of the gelatin/AgNP biocomposites were analyzed using EDS, FE-SEM, and TEM. The results indicated that spherical AgNPs with approximately 12~20 nm in diameter were synthesized successfully in the gelatin matrix by SPP. As the concentration of gelatin was increased (3%, w/w), disperse stability of AgNP was improved and micro-pores of gelatin became smaller and denser in the 3D scaffold. Bactericidal activity of the AgNPs was examined against Staphylococcus aureus and Escherichia coli by measuring zone of growth inhibition and decrease in colony forming unit (CFU). CFUs of S. aureus and E. coli were decreased approximately to 56% and 0%, respectively, by the gelatin/AgNP biocomposite, Ag5G3.

Glomerular Filtration Rate Test Methods and Guidelines (Glomerular Filtration Rate 검사방법 및 가이드라인)

  • Park, Min-Ho;Lee, Ha-Young;Ryu, Hwa-Jin;Yoo, Tae-Min;Noh, Gyeong-Woon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.2
    • /
    • pp.97-100
    • /
    • 2018
  • Purpose The glomerular filtration rate (GFR) test is an important indicator of glomerular filtration and has been used to test renal function and the extent of its function. The GFR test is performed by intravenous injection of radioactive medicines made of $^{51}Cr$-EDTA, and blood concentration is measured by taking blood according to the elapsed time. also, PET-CT, bone scan, transfusion and so on will affect the outcome. Therefore, we will improve the quality of the test by providing guidelines for the GFR test for more accurate testing. Materials and Methods 5 mL of physiological saline solution and 2 mL of $^{51}Cr$-EDTA solution are used to make 5 mL of the radiopharmaceutical solution to be injected into the patient. First, the syringe weight is measured before the injection, and then the radioactive medicine is injected into the patient's vein and the syringe weight is measured after the injection. Blood sampling is performed twice in total. In adults, blood is collected 3 hours / 5 hours after injection and in children 2 hours / 5 hours after injection. The blood sample is centrifuged at 3300 rpm for 5 minutes. Standard solution is prepared by filling diluent water up to the scale indicated in the 200-mL volumetric flask, discarding $500{\mu}L$, injecting $500{\mu}L$ of GFR reagent and mixing well. $500{\mu}L$ each of the standard solution is dispensed into two test tubes, and $500{\mu}L$ of each of the plasma samples collected in time is dispensed into two test tubes and measured with a Cobra Counter. Results At present, the reference range applied in this study is $119.5{\pm}30.3ml/min/1.73m2$ for males and $125.2{\pm}28.2ml/min/1.73m^2$ for females. Conclusion The GFR test is conducted using radioactive medical products. GFR testing is performed as a scheduled test, but PET-CT, dialysis and transfusion, which may affect GFR testing, may be scheduled during GFR testing. Therefore, we could get accurate GFR test results by notifying the ward and department beforehand when booking.