DOI QR코드

DOI QR Code

Characteristics of NH3 Decomposition according to Discharge Mode in Elongated Rotating Arc Reactor

신장 회전아크 반응기에서 방전모드에 따른 암모니아 분해특성

  • Kim, Kwan-Tae (Department of Plasma Engineering, Korea Institute of Machinery & Materials) ;
  • Kang, Hee Seok (Department of Plasma Engineering, Korea Institute of Machinery & Materials) ;
  • Lee, Dae Hoon (Department of Plasma Engineering, Korea Institute of Machinery & Materials) ;
  • Jo, Sung Kwon (Department of Plasma Engineering, Korea Institute of Machinery & Materials) ;
  • Song, Young-Hoon (Department of Plasma Engineering, Korea Institute of Machinery & Materials) ;
  • Kim, In Myoung (Enercons Tech. Ltd.)
  • 김관태 (한국기계연구원 플라즈마연구실) ;
  • 강희석 (한국기계연구원 플라즈마연구실) ;
  • 이대훈 (한국기계연구원 플라즈마연구실) ;
  • 조성권 (한국기계연구원 플라즈마연구실) ;
  • 송영훈 (한국기계연구원 플라즈마연구실) ;
  • 김인명 (에너콘스테크)
  • Received : 2013.01.30
  • Accepted : 2013.05.09
  • Published : 2013.05.30

Abstract

An attempt has been made to optimize elongated rotating arc plasma $NH_3$ scrubber. Among diverse semiconductor processes, diffusion and implantation process inevitably produce $NH_3$ as byproduct and efficient dry process for the decomposition of $NH_3$ is required. Plasma process does not produce NOx that is commonly produced in combustion process and there is no problem of deactivation, usually experienced in catalyst process. However, plasma process uses electrical energy and needs to be optimized to achieve feasibility of application. In this work, mode control of rotating arc is presented as tentative solution for the possible optimization of the process. Based on existing rotating arc, scale-up and following mode mapping was tried. Proposed reactor design was evaluated in the $NH_3$ decomposition process and revealed that optimization scheme is at hand. In the experiment of full scale scrubber including heat exchanger, the process gave more stable and efficient process of $NH_3$ decomposition.

암모니아 처리용 플라즈마 스크러버 공정 최적화 연구를 수행하였다. 여러 반도체공정 중 확산과 이온주입공정에서는 불가피하게 부산물로서 암모니아가 배출되며, 따라서 효율적인 건식처리공정기술이 필요하다. 플라즈마 처리공정은 연소공정에서 배출되는 NOx가 발생하지 않으며, 촉매공정에서 나타나는 비활성문제가 없다. 그러나 전기에너지를 사용하기 때문에 실제 적용을 위한 최적화 연구가 필요하며, 본 연구에서는 공정 최적화를 위한 해결책으로 회전아크 반응기의 모드제어에 대한 연구를 수행하였다. 기존 회전아크 반응기에 대한 스케일 업 및 그에 대한 모드 매핑을 수행하였다. 설계 반응기를 이용하여 암모니아 분해특성을 평가하였고, 최적화 설계가 가능한 것으로 나타났다. 또한 열교환기를 포함한 전체 스케일의 스크러버 실험에서 암모니아 분해공정이 보다 안정적이고, 효율적인 것으로 나타났다.

Keywords

References

  1. Choi, S. S., Park, D.-W. and Watanabe, T., "Thermal plasma decomposition of fluorinated greenhouse gases," Nuclear Eng. Technol., 44(1), 21-32(2012). https://doi.org/10.5516/NET.77.2012.003
  2. Bonarowska, M., Burda, B., Juszezyka, W., Pielaszek, J., Kowalczyk, K. and karpinski, Z., "Hydrodechlorination of $CCl_2F_2$ (CFC-12) over Pd-Au catalysts," Appl. Catal. B-Environ., 35, 13-20(2001). https://doi.org/10.1016/S0926-3373(01)00227-2
  3. Wang, H. P., Liao, S. H., Lin, K. S., Huang, Y. J. and Wang, H. C., "Pyrolysis of PU/CFCs wastes," J. Hazard. Mater., 58, 221-226(1998). https://doi.org/10.1016/S0304-3894(97)00133-7
  4. Fiala, A., Kiehlbauch, M., Mahnovski, S. and Graves, D. B., "Model of point-of-use plasma abatement of perfluorinated compounds with an inductively coupled plasma," J. Appl. Phys., 86(1), 152(1999). https://doi.org/10.1063/1.370711
  5. Hong, Y. C., Kim, H. S. and Uhm, H. S., "Reduction of perfluorocompound emissions by microwave plasma-torch," Thin Solid Films, 435, 329(2003). https://doi.org/10.1016/S0040-6090(03)00363-8
  6. Kabouzi, Y., Nantel-Valiquette, M., Moisan, M. and Roataing, J. C., "Abatement of greenhouse gases using surfacewave microwave discharges sustained at atmospheric pressure," Proceedings of 17th International Symposium on Plasma Chemistry(2005).
  7. Kim, H. H., "Nonthermal plasma processing for air-pollution control: A historical review, current issues, and future prospects," Plasma Proc. Polym., 1, 91(2004). https://doi.org/10.1002/ppap.200400028
  8. Song, Y. H., Cha, M. S., Kim, Y., Kim, K. T., Kim, S. J., Han, S. O. and Choi, K. I., "Synergistic effects of nonthermal plasma and catalysts on VOCs decomposition," J. Adv. Oxid. Technol., 6, 17(2003).
  9. Kim, Y., Kim, K. T., Cha, M. S., Song, Y. H. and Kim, S. J., "$CF_4$ decomposition using streamer and glow mode in dielectric barrier discharges," IEEE Trans. Plasma Sci., 33(3), 1041(2005). https://doi.org/10.1109/TPS.2005.848616
  10. Chang, J. S., "Removal of NF3 from semiconductor-process flue gases by tandem packed-bed plasma and adsorbent hybrid systems," IEEE Trans. Ind. Applications, 36(5), 1251 (2000). https://doi.org/10.1109/28.871272
  11. Kim, K.-T, Kim, Y. H., Cha, M. S., Song, Y.-H., Kim, S. J. and Ryu, J. I., "Decomposition characteristics of PFCs for various discharge methods in Dielectric Barrier Discharge," Kor. Soc. Atmos. Environ., 20(5), 625-632(2004).
  12. Fridman, A., "Plasma chemistry (Cambridge, UK: Cambridge University Press),"(2008).
  13. Bora, B., Aomoa, N. and Kakati, M., "Characteristics and temperature measurement of a non-transferred cascaded DC plasma torch," Plasma Sci. Technol., 12, 181-187(2010). https://doi.org/10.1088/1009-0630/12/2/11
  14. Lee, D. H., Kim, K. T., Cha, M. S. and Song, Y.-H., "Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane," Proc. Combust. Inst., 31, 3343-3351(2007). https://doi.org/10.1016/j.proci.2006.07.230
  15. Hwang, N., Song, Y. H. and Cha, M. S., "Efficient use of $CO_2$ reforming of methane with an arc-jet plasma," IEEE Trans. Plasma Sci.., 38, 3291-3299(2010). https://doi.org/10.1109/TPS.2010.2064179
  16. Lee, D. H., Kim, K. T., Cha, M. S. and Song, Y.-H., "Plasma-controlled chemistry in plasma reforming of methane," Int. J. Hydrogen Energy, 35, 10967-10976(2010). https://doi.org/10.1016/j.ijhydene.2010.07.029
  17. Korolev, Y. D., Frants, O. B., Geyman, V. G., Landl, N. V. and Kasyanov, V. S., "Low-current gliding arc in an air flow," IEEE Trans. Plasma Sci., 39, 3319-3325(2011). https://doi.org/10.1109/TPS.2011.2151885
  18. Lee, D. H., Lee, J. O., Kim, K. T., Song, Y. H., Kim, E. and Han, H. S., "Hydrogen in plasma-assisted hydrocarbon selective catalytic reduction," Int.. J. Hydrogen Energy, 37, 3225-3233(2012). https://doi.org/10.1016/j.ijhydene.2011.11.070
  19. Kim, K.-T., Lee, D. H., Lee, J. O., Cha, M. S. and Song, Y. H., "$CF_4$ treatment characteristics using an elongated arc reactor," Kor. Soc. Atmos. Environ., 26(1), 85-93(2010). https://doi.org/10.5572/KOSAE.2010.26.1.085