• Title/Summary/Keyword: Solute Strengthening

Search Result 7, Processing Time 0.015 seconds

Solute Strengthening Effects for 36 Stainless Steel at Elecated Temperature (고온에서의 316스테인리스강의 용질원자에 의한 강화효과)

  • 백남주;이상매
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.4
    • /
    • pp.433-441
    • /
    • 1986
  • 본 연구에서는 인장시험과 인장시 변형율속도 변화와 온도변화를 주는 시험을 통하여 316스테인리스강에 있어서의 비탄성거동을 규명하여 가공경화에 대한 용질강화 효과를 시험하고, Voce형의 발전방정식(evolutionary equation)을 포함하는 Arrhenius 형의 구성식에 용질강화효과를 첨가하여 정확한 비탄성 해석을 기하고자 한다.

Influences on Distribution of Solute Atoms in Cu-8Fe Alloy Solidification Process Under Rotating Magnetic Field

  • Zou, Jin;Zhai, Qi-Jie;Liu, Fang-Yu;Liu, Ke-Ming;Lu, De-Ping
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1275-1284
    • /
    • 2018
  • A rotating magnetic field (RMF) was applied in the solidification process of Cu-8Fe alloy. Focus on the mechanism of RMF on the solid solution Fe(Cu) atoms in Cu-8Fe alloy, the influences of RMF on solidification structure, solute distribution, and material properties were discussed. Results show that the solidification behavior of Cu-Fe alloy have influenced through the change of temperature and solute fields in the presence of an applied RMF. The Fe dendrites were refined and transformed to rosettes or spherical grains under forced convection. The solute distribution in Cu-rich phase and Fe-rich phase were changed because of the variation of the supercooling degree and the solidification rate. Further, the variation in solute distribution was impacted the strengthening mechanism and conductive mechanism of the material.

Microstructure-Strengthening Interrelationship of an Ultrasonically Treated Hypereutectic Al-Si (A390) Alloy

  • Kim, Soo-Bae;Cho, Young-Hee;Jung, Jae-Gil;Yoon, Woon-Ha;Lee, Young-Kook;Lee, Jung-Moo
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1376-1385
    • /
    • 2018
  • Ultrasonic melt treatment (UST) was applied to an A390 hypereutectic Al-Si alloy in a temperature range of $750-800^{\circ}C$ and its influence on the solidification structure and the consequent increase in strength was investigated. UST at such a high temperature, which is about $100^{\circ}C$ above the liquidus temperature, had little effect on the grain refinement but enhanced the homogeneity of the microstructure with the uniform distribution of constituent phases (e.g. primary Si, ${\alpha}-Al$ and intermetallics) significantly refined. With the microstructural homogeneity, quantitative analysis confirmed that UST was found to suppress the formation of Cu-bearing phases, i.e., $Q-Al_5Cu_2Mg_8Si_6$, $Al_2Cu$ phases that form in the final stage of solidification while notably increasing the average Cu contents in the matrix from 1.29 to 2.06 wt%. A tensile test exhibits an increase in the yield strength of the as-cast alloy from 185 to 208 MPa, which is mainly associated with the solute increment within the matrix. The important role of UST in the microstructure evolution during solidification is discussed and the mechanism covering the microstructure-strengthening interrelationship of the ultrasonically treated A390 alloy is proposed.

Effects of Niobium Microalloying on Microstructure and Properties of Hot-Dip Galvanized Sheet

  • Mohrbacher, Hardy
    • Corrosion Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • Niobium microalloying is effective in hot-rolled and cold-rolled steels by providing a fine-grained microstructure resulting in increased strength. To optimize the strengthening effect, alloy design and hot-rolling conditions have to be adapted. As a key issue the dissolution and precipitation characteristics of Nb are discussed in particular with regard to the run-out table conditions. It is then considered how the hot-rolled microstructure and the solute state of Nb interact with the hot-dip galvanizing cycle. The adjusted conditions allow controlling the morphology and distribution of phases in the cold-rolled annealed material. Additional precipitation hardening can be achieved as well. The derived options can be readily applied to produce conventional HSLA and IF high strength steels as well as to modern multiphase steels. It will be explained how important application properties such as strength, elongation, bendability, weldability and delayed cracking resistance can be influenced in a controlled and favorable way. Examples of practical relevance and experience are given.

Effect of Al Solution Strengthening on Damping Capacities of Mg-Al Alloy Solid Solutions (Al 고용 강화가 Mg-Al 합금 고용체의 진동감쇠능에 미치는 영향)

  • Joong-Hwan Jun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.5
    • /
    • pp.221-227
    • /
    • 2024
  • The damping capacities in the strain-amplitude dependent and strain-amplitude independent regions were comparatively investigated for pure Mg and Mg-X%Al solid solutions (X : 1, 2 at%) to clarify the role of Al solute in the damping properties of Mg-Al binary solid solution. In order to rule out the effect of grain size on damping capacity, grain sizes of the samples were adjusted to an almost similar level by changing the heat-treatment or solution treatment times at 683 K (12 h, 24 h and 32 h for pure Mg, Mg-1%Al and Mg-2%Al alloys, respectively). The damping capacities of the heat-treated pure Mg and Mg-X%Al solid solutions exhibited a decreasing tendency with an increase in Al concentration both in the strain-amplitude dependent and strain-amplitude independent regions. The observed damping trends depending on strain-amplitude were analyzed and discussed in association with decreasing length between weak pinning points (Al solutes) in Granato-Lücke model.

Correlation of the Microstructural Degradation and Mechanical Properties of IN 738LC (IN 738LC 합금의 미세조직 열화와 물성의 상관성 연구)

  • Yoo Junghoon;Jo Sungwook;Shin Keesam;Hur Sungkang;Lee Je-Hyun;Kim Eui-Hyun;Jung Jine-sung;Chang Sungho;Song Geewook;Ha Jeongsoo
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.28-34
    • /
    • 2004
  • IN 738LC, the major material for gas-turbine for power generation, was heat treated at $750^{\circ}C$, $850^{\circ}C$, $950^{\circ}C$ for 1000, 2000, and 4000 hrs and the microstructural evolution and mechanical properties were examined using optical microscope, XRD, SEM/EDS. The results showed ${\gamma}$', the main strengthening elements in this alloy, was about 300 nm in size and was about 56% by area fraction in as-cast samples. The area fraction of ${\gamma}$' peaked at 2000 hours at $750^{\circ}C$. The average diameter of the ${\gamma}$' which was about 300 nm at ascast specimen increased to about 1 $\mu\textrm{m}$ after heat treatment at $950^{\circ}C$ for 4000 hrs. Carbides were formed at dendrite, cell or grain boundaries which was ascribed to the segregation caused by solute redistribution during solidification. It was found that MC type carbides formed at low temperature, whereas carbides of $M_{23}$ /$C_{ 6}$/ type formed at higher temperature or at longer degradation. The hardness and impact energy decreased as the heat treatment temperature or time of retention increased, which was inaccrodance with the area fraction of ${\gamma}$'.

A Study on the Stress Relief Cracking of HSLA-100 and HY-100 steels (HSLA-100강 및 HY-100강의 응력제거처리 균열에 관한 연구)

  • 박태원;심인옥;김영우;강정윤
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.48-57
    • /
    • 1996
  • A study was made to examine the characteristics of base metal and stress relief cracking(SRC) of heat affected zone(HAZ) for HY-100 and Cu-bearing HSLA-100 steels. The Gleeble thermal/mechanical simulator was used to simulate the SRC/HAZ. The details of mechanical properties of base plate and SRC tested specimens were studied by impact test, optical microscopy and scanning electron microscopy. The specimens were aged at $650^{\circ}C$ for HSLA-100 steel and at $660^{\circ}C$ for HY-100 steel and thermal cycled from $1350^{\circ}C$ to $25^{\circ}C$ with a cooling time of $\Delta$t_${800^{circ}C/500^{circ}C}$=21sec. corresponds to the heat input of 30kJ/cm. The thermal cycled specimens were stressed to a predetermined level of 248~600MPa and then reheated to the stress relief temperatures of $570~620^{\circ}C$. The time to failure$(t_f)$ at a given stress level was used as a measure of SRC susceptibility. The strength, elongation and impact toughness of base plate were greater in HSLA-100 steel than in HY-100 steel. The time to failure was decreased with increasing temperature and/or stress. HSLA-100 steel was more susceptible to stress relief cracking than HY-100 steel under same conditions. It is thought to be resulted from the precipitation of $\varepsilon$-Cu phase by dynamic self diffusion of solute atoms. By the precipitation of $\varepsilon$-Cu phase, the differential strengthening of grain interior relative to grain boundary may be greater in the Cu-bearing HSLA-100 steel than in HY-100 steel. Therefore, greater strain concentration at grain boundary of HSLA-100 steel results in the increased SRC susceptibility. The activation energies for SRC of HSLA-100 steel are 103.9kcal/mal for 387MPa and 87.6kcal/mol for 437MPa and that of HY-100 steel is 129.2kcal/mol for 437MPa.

  • PDF