• 제목/요약/키워드: Soluble expression

검색결과 462건 처리시간 0.027초

Expression of Recombinant Human Growth Hormone in a Soluble Form in Escherichia coli by Slowing Down the Protein Synthesis Rate

  • Koo, Tai-Young;Park, Tai-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.579-585
    • /
    • 2007
  • Formation of inclusion bodies is usually observed when foreign proteins are overexpressed in E. coli. The formation of inclusion bodies might be prevented by lowering the rate of protein synthesis, and appropriate regulation of the protein expression rate may lead to the soluble expression. In this study, human growth hormone (rhGH) was expressed in a soluble form by slowing down the protein synthesis rate, which was controlled in the transcriptional and translational levels. The transcriptional level was controlled by the regulation of the amount of RNA polymerase specific to the promoter in front of the rhGH gene. For lowering the rate of translation, the T7 transcription terminator-deleted vector was used to synthesize the longer mRNA of the target gene because the longer mRNA is expected to reduce the availability of tree ribosomes. In both methods, the percentage of soluble expression increased when the expression rate slowed down, and more than 93% of rhGH expressed was a soluble form in the T7 transcription terminator-deleted expression system.

The Effect of Growth Condition on a Soluble Expression of Anti-EGFRvIII Single-chain Antibody in Escherichia coli NiCo21(DE3)

  • Dewi, Kartika Sari;Utami, Ratna Annisa;Hariyatun, Hariyatun;Pratiwi, Riyona Desvy;Agustiyanti, Dian Fitria;Fuad, Asrul Muhamad
    • 한국미생물·생명공학회지
    • /
    • 제49권2호
    • /
    • pp.148-156
    • /
    • 2021
  • Single-chain antibodies against epidermal growth factor receptor variant III (EGFRvIII) are potentially promising agents for developing antibody-based cancer treatment strategies. We described in our previous study the successful expression of an anti-EGFRvIII scFv antibody in Escherichia coli. However, we could also observe the formation of insoluble aggregates in the periplasmic space, limiting the production yield of the active product. In the present study, we investigated the mechanisms by which growth conditions could affect the expression of the soluble anti-EGFRvIII scFv antibody in small-scale E. coli NiCo21(DE3) cultures, attempting to maximize production. The secreted scFv molecules were purified using Ni-NTA magnetic beads and protein characterization was performed using SDS-PAGE and western blot analyses. We used the ImageJ software for protein quantification and determined the antigen-binding activity of the scFv antibody against the EGFRvIII protein. Our results showed that the highest percentage of soluble scFv expression could be achieved under culture conditions that combined low IPTG concentration (0.1 mM), low growth temperature (18℃), and large culture dish surface area. We found moderate-yield soluble scFv production in the culture medium after lactose-mediated induction, which was also beneficial for downstream protein processing. These findings were confirmed by conducting western blot analysis, indicating that the soluble, approximately 30-kDa scFv molecule was localized in the periplasm and the extracellular space. Moreover, the antigen-binding assay confirmed the scFv affinity against the EGFRvIII antigen. In conclusion, our study reveals that low-speed protein expression is preferable to obtain more soluble anti-EGFRvIII scFv protein in an E. coli expression system.

Cloning and Characterization of Novel Soluble Acid Invertase Which is Responsible to JA, ABA and GA During Tip Growth of Pea Seedlings (Pisum sativum)

  • Kim, Dong-Giun;Zhang, Jiesheng
    • 환경생물
    • /
    • 제27권4호
    • /
    • pp.406-413
    • /
    • 2009
  • The enzyme invertase contributes to sugar unloading, pathogen defense, differentiation and development in plants. We cloned the complete cDNA of a soluble acid invertase from pea seedlings (Pisum sativum) via RT-PCR and the rapid amplification of the cDNA end (RACE) technique. The full-length cDNA of the soluble pea invertase comprised 2237 bp and contained a complete open reading frame encoding 647 amino acids. The deduced amino acid sequence showed high homology to soluble acid invertases from various plants. Northern blot analysis demonstrated the soluble acid invertase gene of P. sativum was strongly expressed in sink organs such as shoot tips and root tips, and induced by abscisic acid, gibberellic acid and jasmonic acid in shoots. Especially, gibberellic acid enhanced the gene expression of the soluble acid invertase in a time-dependent manner. This study presents that the gene expression patterns of a soluble acid invertase from pea are strongly consistent with the suggestion that individual invertase gene product has different functions in the growing plant.

Maltose Binding Protein 융합단백질에 의한 인간유래의 앤지오스타틴과 앤도스타틴의 대장균에서 수용성 단백질발현 (Soluble Expression of Human Angiostatin and Endostatin by Maltose Binding Protein (MBP) Fusion in E. coli)

  • 박선열;최신건
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.59-63
    • /
    • 2008
  • Rapid production of therapeutic proteins such as angiostatin and endostatin angiogenic inhibititors has been highly demanded for cancer treatment. In this regard, recombinant human angiostatin and endostatin were successfully expressed as soluble forms by maltose binding protein (MBP)-mediated fusion expression in Escherichia coli. PCR amplified, angiostatin and endostatin genes from human placenta cDNA library were inserted into an expression vector pMAL-c2e to construct prokaryotic expression vectors, pMAL-c2e/AS and pMAL-c2e/ES, respectively. Recombinant angiostatin and endostatin were efficiently expressed in E. coli origami (DE3) after IPTG induction and protein expression were confirmed by SDS-PAGE analyses. The expressed recombinant proteins were purified near homogenity using an amylose affinty column chromatography. In contrast that previous E. coli expressions were all insoluble, our results first time demonstrated that MBP fused human angiostatin and endostatin were soluble in E. coli.

  • PDF

Soluble fraction from silk mat induced bone morphogenic protein in RAW264.7 cells

  • Kim, Seong-Gon;Jo, You-Young;Kweon, HaeYong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제41권2호
    • /
    • pp.51-55
    • /
    • 2020
  • The objective of this study was to evaluate the changes in gene expression after incubation of cells with soluble fraction from different silk mat layers. A silk cocoon from Bombyx mori was separated into 4 layers of equal thickness. The layers were numbered from 1 to 4 (from the inner to outer layer). Each silk mat was placed into normal saline and collected soluble fraction. They were administered to RAW264.7 cells, and changes in the expression of genes were evaluated by cDNA microarray analysis. Layer 1 and 4 groups showed significantly higher expression of BMP-2 at 8 h after administration of soluble fraction (P < 0.05). Runx2 expression was significantly higher in Layer 4 group at 8h (P < 0.05). The silk mat from the innermost and outermost portion of the silkworm cocoon showed a significant change in the expression of genes that are associated with osteoinduction such as BMP-2 and runx2.

Soluble Expression of Recombinant Olive Flounder Hepcidin I Using a Novel Secretion Enhancer

  • Lee, Sang Jun;Park, In Suk;Han, Yun Hee;Kim, Young Ok;Reeves, Peter R.
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.140-145
    • /
    • 2008
  • Expression of olive flounder hepcidin I (HepI) fused with truncated OmpA signal peptides ($OmpASP_{tr}$) as directional signals does not produce soluble fusion proteins. However, by inserting amino acid segments (xxx) varying in pI and hydrophobicity/hydrophilicity into a leader sequence containing a truncated OmpASP ($OmpASP_{tr}$) and a factor Xa cleavage site (Xa) [$OmpASP_{tr}{\mid}(xxx){\mid}Xa$], we were able in some cases to express soluble recombinant HepI. Soluble expression of the recombinant protein strongly correlated with (xxx) insertions of high pI and hydrophilicity. Therefore, we modified the $OmpASP_{tr}{\mid}(xxx){\mid}Xa$ sequence by inserting Arg and Lys into (xxx) to increase the hydrophilicity of the signal peptide region. These modifications enhanced the expression of soluble recombinant HepI. Hydropathic profile analysis of the $OmpASP_{tr}{\mid}(xxx){\mid}Xa$ HepI fusion proteins revealed that the transmembrane-like domains derived from the $OmpASP_{tr}{\mid}(xxx){\mid}Xa$ sequence were larger than the internal positively charged domain native to HepI. It should therefore be possible to overcome the obstacle of internal positively charged domains to obtain soluble expression of recombinant proteins by monitoring the hydrophilicity and hydropathic profile of the signal peptide region using a computer program.

Soluble Expression and Purification of Human Tissue-type Plasminogen Activator Protease Domain

  • Lee, Hak-Joo;Im, Ha-Na
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2607-2612
    • /
    • 2010
  • Human tissue-type plasminogen activator (tPA) is a valuable thrombolytic agent used to successfully treat acute myocardial infarction, thromboembolic stroke, peripheral arterial occlusion, and venous thromboembolism. Recombinant tPA is accumulated as an inactive form in inclusion bodies of E. coli and is refolded in vitro, which is accompanied by extensive aggregation. In the present study, a tPA protease domain was expressed in an active soluble form in the cytosol of E. coli Rosetta-gami cells, which allowed disulfide bond formation and supplied the tRNA molecules required for six rarely used codons in E. coli. This strategy increased the amount of soluble protease domain protein and avoided the cumbersome refolding process. The purified protease domain not only degraded tPA substrate peptides but also formed a covalently bound complex with plasminogen activator inhibitor-1, as does full-length tPA. Soluble expression and purification of tPA domains may aid in functional analyses of this multi-domain protein, which has been implicated in many physiological and pathological processes.

Improving Soluble Expression of β-Galactosidase in Escherichia coli by Fusion with Thioredoxin

  • Nam, E.S.;Jung, H.J.;Ahn, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권12호
    • /
    • pp.1751-1757
    • /
    • 2004
  • Recombinant heterologous proteins can be produced as insoluble aggregates partially or perfectly inactive in Escherichia coli. One of the strateges to improve the solubility of recombinant proteins is fusion with a partner that is excellent in producing soluble fusion proteins. To improve the production of soluble $\beta$-galactosidase, the gene of Thermus thermophilus KNOUC112 $\beta$-galactosidase (KNOUC112 $\beta$-gal) was fused with thioredoxin gene, and optimization of its expression in E. coli TOP10 was performed. KNOUC112 $\beta$-gal in pET-5b was isolated out, fused with thioredoxin gene in pThioHis C, and transformed to E. coli TOP10. The $\beta$-galactosidase fused with thioredoxin was produced in E. coli TOP10 as dimer and trimer. The productivity of fusion $\beta$ -galactosidase expressed via pThioHis C at 37$^{\circ}C$ was about 5 times higher than that of unfused $\beta$-galactosidase expressed via pET-5b at 37$^{\circ}C$. Inclusion body of $\beta$-galactosidase was formed highly, regardless of the induction by IPTG when KNOUC112 $\beta$ -gal was expressed via pET-5b at 37$^{\circ}C$. Fusion $\beta$ -galactosidase expressed at 37$^{\circ}C$ via pThioHis C without the induction by IPTG was soluble, but the induction by IPTG promoted the formation of inclusion body. Lowering the incubation temperature for the expression of fusion gene under 25$^{\circ}C$ prevented the formation of inclusion body, optimally at 25$^{\circ}C$. 0.07 mM of IPTG was sufficient for the soluble expression of fusion gene at 25$^{\circ}C$. The soluble production of Thermus thermophilus KNOUC112 $\beta$-galactosidase could be increased about 10 times by fusion with thioredoxin, and optimization of incubation temperature and IPTG concentration for induction.

Cloning and overexpression of lysozyme from Spodoptera litura in prokaryotic system

  • Kim, Jong-Wan;Park, Soon-Ik;Yoe, Jee-Hyun;Yoe, Sung-Moon
    • Animal cells and systems
    • /
    • 제15권1호
    • /
    • pp.29-36
    • /
    • 2011
  • Insect lysozymes are basic, cationic proteins synthesized in fat body and hemocytes in response to bacterial infections and depolymerize the bacterial cell wall. The c-type lysozyme of the insect Spodoptera litura (SLLyz) is a single polypeptide chain of 121 residues with four disulfide bridges and 17 rare codons and is approximately 15 kDa. The full-length SLLyz cDNA is 1039 bp long with a poly(A) tail, and contains an open reading frame of 426 bp long (including the termination codon), flanked by a 54 bp long 5' UTR and a 559 bp long 3' UTR. As a host for the production of high-level recombinant proteins, E. coli is used most commonly because of its low cost and short generation time. However, the soluble expression of heterologous proteins in E. coli is not trivial, especially for disulfide-bonded proteins. In order to prevent inclusion body formation, GST was selected as a fusion partner to enhance the solubility of recombinant protein, and fused to the amplified products encoding mature SLLyz. The expression vector pGEX-4T-1/rSLLyz was then transformed into E. coli BL21(DE3)pLysS for soluble expression of rSLLyz, and the soluble fusion protein was purified successfully. Inhibition zone assay demonstrated that rSLLyz showed antibacterial activity against B. megaterium. These results demonstrate that the GST fusion expression system in E. coli described in this study is efficient and inexpensive in producing a disulfide-bonded rSLLyz in soluble, active form, and suggest that the insect lysozyme is an interesting system for future structural and functional studies.

Soluble expression and purification of synthetic human bone morphogenetic protein-2 in Escherichia coli

  • Ihm, Hyo-Jin;Yang, Seung-Ju;Huh, Jae-Wan;Choi, Soo-Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • 제41권5호
    • /
    • pp.404-407
    • /
    • 2008
  • A 345-bp gene that encodes human bone morphogenetic protein-2 (hBMP-2) has been synthesized. The codon usage of the resulting gene was modified to include those triplets that are utilized in highly expressed Escherichia coli genes. The hBMP-2 gene was efficiently expressed in E. coli as a soluble and active protein. Since the recombinant hBMP-2 was readily solublized, no further solublization steps were required throughout purification. No additional tagging residues were introduced into the synthetic hBMP-2 gene product. The developed synthetic gene is a promising approach for scaling-up the soluble expression of hBMP-2.