• Title/Summary/Keyword: Solitary Wave Propagation

Search Result 17, Processing Time 0.02 seconds

Numerical Simulation of One-Dimensional Madsen-Sørensen Extended Boussinesq Equations Using Crowhurst-Zhenquan Scheme (Crowhurst-Zhenquan 방법을 이용한 1차원 Madsen-Sørensen 확장형 Boussinesq 방정식의 수치 시뮬레이션)

  • Kang, Sangmuk;Park, Jinsoo;Jang, Taek Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.346-351
    • /
    • 2017
  • The aim of this paper is to apply the Crowhurst-Zhenquan scheme to one-dimensional Madsen-Sørensen extended Boussinesq equations. In order to verify the application of the aforementioned scheme, the propagation of solitary waves was simulated for two different cases of submarine topography; e.g., a plane beach and submerged breakwater. The simulated results are compared to the results of recent studies and show favorable agreement. The behavior of progressive waves is also investigated.

A NUMERICAL ANALYSIS USING CIP METHOD (CIP 방법을 사용한 해석법)

  • Lee, J.H.;Hur, N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.211-217
    • /
    • 2009
  • The numerical program has been developed for the purpose of the complicate geometries application using CIP method. The non-staggered, non-orthogonal, and unstructured grid system can be also used for the various geometries in the program. For validating CIP solver, the lid-driven cavity flow and solitary wave propagation flow are carried out. Test results show a good agreement with the verified results. The dynamic solver was used for the behavior of moving body. Interface process between the two solvers is introduced. The research was performed on the flow problem around torpedo and log and the flow problem in a tank in order to analyze the three phase flow problem Although the comparison to the verified results was not quantitatively performed, the trend of the results was reasonable.

  • PDF

Computations of Free-Surface Flows by Use of Marker and Cell Method (MAC 방법을 이용한 자유표면 유동계산)

  • PARK Jong-Chun;SHIN Myung-Soo;VAN Suak-Ho;KIM Wu-Joan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.138-147
    • /
    • 1995
  • The boundary conditions for the free-surface including the important meaning for both scientific and engineering purposes are described together with the numerical techniques to implement the conditions. Two kinds of numerical method based on MAC method are introduced. One is applied to the problem of 2D solitary wave propagation and the other is applied to the problem of 3D bow wave breaking.

  • PDF

Theoretical Description of All-Optical Switching Phenomena Involving Coupled Gap Solitons

  • Lee, Sangjae
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.403-413
    • /
    • 1996
  • We study the propagation of two pulses with orthogonal linear polarizations in a nonlinear periodic dielectric structure with $X^{(3)}$ nonlinearity. Using an envelope- function approach, we derive the coupled nonlinear Schrodinger equations governing the spatio-temporal evolutions of the two orthogonally polarized modes in a nonlinear periodic structure. We then find their solitary-wave solutions referred to as coupled gap solitons. We show that two orthogonally polarized pulses can co-propagate as a coupled gap soliton through a nonlinear periodic structure while each pulse alone will be strongly reflected due to the Bragg reflection. Based on the results, we present an all-optical switching scheme which has a novel architecture and principle. We also study the stability of coupled gap solitons to find the dragging phenomena in a nonlinear birefringent periodic medium.

  • PDF

Finite element analysis of flow with moving free surface by volume of fluid method (VOF 방법에 의한 이동하는 자유표면이 존재하는 유동의 유한요소 해석)

  • Sin, Su-Ho;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1230-1243
    • /
    • 1997
  • A numerical technique for simulating incompressible viscous flow with free surface is presented. The flow field is obtained by penalty finite element formulation. In this work, a modified volume of fluid (VOF) method which is compatible with 4-node element is proposed to track the moving free surface. This scheme can be applied to irregular mesh system, and can be easily extended to three dimensional geometries. Numerical analyses were done for two benchmark examples, namely the broken dam problem and the solitary wave propagation problem. The numerical results were in close agreement with the existing data. Illustrative examples were studied to show the effectiveness of the proposed numerical scheme.

Kinetic energy conservative algorithm in moving grid system using segregated finite element formulation (이동격자계에서 분리유한요소법에 의한 운동에너지 보존 알고리듬)

  • Seong, Jae-Yong;Choe, Hyeong-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1538-1551
    • /
    • 1997
  • Kinetic energy conservation for fixed and moving grids is examined in time-accurate finite element computation of fully unsteady inviscid flows. As numerical algorithms, fractional step method (FSM) and modified SIMPLE are used. To simulate the flow in moving grid system, arbitrary Lagrangian-Eulerian (ALE) method is adopted. In the present study, the energy conserving time integration rule for finite element algorithm is proposed and discussed schematically. It is shown that the discretization by Crank-Nicolson in time and Galerkin (central difference) in space must be used to ensure energy conservation. The developed code has been tested for a standing vortex in fixed or moving grid system, sloshing in a tank and propagation of a solitary wave, and has been shown to be a completely energy conserving algorithm.

A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface(I)-New Free Surface Tracking Algorithm and Its Verification- (자유 표면이 존재하는 유체 유동 해석을 위한 VOF방법의 기반의 새로운 수치 기법(I)-새로운 자유 표면 추적 알고리즘 및 검증-)

  • Kim, Min-Su;Sin, Su-Ho;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1555-1569
    • /
    • 2000
  • Numerical simulation of fluid flow with moving free surface has been carried out. For the free surface flow, a VOF(Volume of Fluid)-based algorithm utilizing a fixed grid system has been investigated. In order to reduce numerical smearing at the free surface represented on a fixed grid system, a new free surface tracking algorithm based on the donor-acceptor scheme has been presented. Novel features of the proposed algorithm are characterized as two numerical tools; the orientation vector to represent the free surface orientation in each cell and the baby-cell to determine the fluid volume flux at each cell boundary. The proposed algorithm can be easily implemented in any irregular non-uniform grid systems that are usual in finite element method (FEM). Moreover, the proposed algorithm can be extended and applied to the 3-D free surface flow problem without additional efforts. For computation of unsteady incompressible flow, a finite element approximation based on the explicit fractional step method has been adopted. In addition, the SUPG(streamline upwind/Petrov-Galerkin) method has been implemented to deal with convection dominated flows. Combination of the proposed free surface tracking scheme and explicit fractional step formulation resulted in an efficient solution algorithm. Validity of the present solution algorithm was demonstrated from its application to the broken dam and the solitary wave propagation problems.