• 제목/요약/키워드: Solidification microstructure

검색결과 241건 처리시간 0.023초

마이크로 엑츄에이터용 형상기억 리본 제조 및 제특성 평가 (The Fabrication and Evaluation of SMA Ribbons for Micro Actuator Application)

  • 이영수;장우양
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.554-554
    • /
    • 2000
  • To improve mechanical properties of Cu-Al-Ni alloy by the grain refinement, Cu-Al-Ni SMA ribbons were fabricated by melt spinning apparatus. The variations of microstructure, mechanical properties and transformation characteristics with the condition of rapid solidification and annealing time-temperature were investigated in Cu-Al-Ni SMA ribbons. The ribbons fabricated by melt spinning obtained around 1.5nm in width and 50-60${\mu}{\textrm}{m}$ in thickness. With increasing wheel speed in order of 10m/s, 15m/s, 20m/s, 30m/s and 3m/s, the grain size was decreased in order of 10${\mu}{\textrm}{m}$, 6.25${\mu}{\textrm}{m}$, 5.5${\mu}{\textrm}{m}$, 3${\mu}{\textrm}{m}$ and 3${\mu}{\textrm}{m}$. $M_{s}$ and $A_{s}$ temperature were decreased with decreasing grain size. By X-ray diffraction test, ordered $\beta$$_1$ phase was observed in all the SMA ribbons and the volume friction of it was increased with increasing wheel speed. With increasing wheel speed, strain was increased from 4.2% to 5.8% and fracture mode has changed from mixture of intergranular and dimple fracture to mixture of fiber structure and dimple fracture. The grain size of ribbon heat-treated at $600^{\circ}C$ was increased with increasing time. In the heat-treated ribbons at 55$0^{\circ}C$, ${\gamma}$$_2$ phases were observed.d.d.

  • PDF

용탕단조 Mg-Zn-Zr 합금의 미세조직 및 강화기구 (Microstructure and Strengthening Behavior in Squeeze Cast Mg-Zn by Addition of Zr)

  • 오상섭;황영하;김도향;홍준표;박익민
    • 한국주조공학회지
    • /
    • 제19권1호
    • /
    • pp.38-46
    • /
    • 1999
  • Microstructural characteristics and strengthening behavior in Mg-5wt%Zn-0.6wtZr alloys have been investigated by a combination of optical, secondary electron and transmission electron microscopy, differential thermal analysis, and hardness and tensile, creep property measurements. The result have been compared with those of Mg-5wt%Zn alloys. The as-squeeze cast microstructure consisted of dendrite ${\alpha}-Mg$, interdendrite or intergranular $Mg_7Zn_3$ and fine dispersoids of $ZnZr_2$. The size of secondary solidification phases in Mg-5wt%Zn-0.6wtZr alloys was significantly smaller than that of the Mg-5wt%Zn alloys due to the existence of fine dispersoid of $ZnZr_2$ which also effected the refinement of grain size. TEM study showed that the main cause of age hardening is formation of fine rodlike ${\beta}_1\;'$ precipitates as well as fine $ZnZr_2$ dispersoids. Due to the observed microstructural characteristics mechanical propeties of Mg-5wt%Zn-0.6wtZr alloys was found to be superior to those of Mg-5wt%Zn alloys.

  • PDF

Research of reducing thermal stress generated in MGC turbine nozzles

  • Fujimoto, Syuu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.385-390
    • /
    • 2004
  • An unique ceramic material produced through unidirectional solidification with eutectic composition of two-phase oxides was introduced recently. This composite material has the microstructure of coupled networks of two single crystals interpenetrate each other without grain boundaries. Depending on this microstructure this material, called Melt Growth Composite (MGC), can sustain its room temperature strength up to 1$700^{\circ}C$ (near its melting point) and offer strong oxidization-resistant ability, making its characteristics quite ideal for the gas turbine application. The research project on MGC started in 2001 with the objective of establishing component technologies for MGC application to the high temperature components of the gas turbine engine. MGC turbine nozzles are expected to improve efficiency of gas turbine. However, reduction of the thermal stress is required since high thermal stress is easily generated in MGC turbine nozzles due to temperature distribution. Firstly, the hollow nozzle shape was optimized to reduce thermal stress using numerical analysis. From the results of the first hot gas flow tests, the thermal stress due to span-wise temperature distribution was required to be reduced, and separated nozzle to three pieces was designed. This was tested in hot gas flow at 140$0^{\circ}C$ level, and temperature distributions on the nozzle surface were obtained and stress field was evaluated.

  • PDF

Fe-Aluminide합금의 미세조직과 기계적 특성에 관한 연구 (A Study on the Microstructure and Mechanical properties of Fe Aluminide alloys)

  • 조종춘;이도인;이성재;최병학;김학민
    • 연구논문집
    • /
    • 통권22호
    • /
    • pp.115-125
    • /
    • 1992
  • Mechanical properties and microstructure were investigated on vacuum induction melted $Fe_3A1$base alloys of $DO_3$ structure. Specal emphasis were put on the effect of alloy chemistry, grain size and process(rolling, directional solidification) on mechanical properties of Fe-22.5-39at.%Al at elevated temperature between room temperature and $800^{\circ}C$. grain size of as-cast alloys is refined by rolling from 1mm to $80\mum$. Tensile strength of Fe-24.lat.%AI was about 404MPa at the critical ordering temperature, and the fracture strain of the alloy was 1-2% at room temperature. An inverse temperature dependence of the strength is noticed as-cast $Fe_3A1$. The presence of Cr and Zr do not affect the room temperature ductility and high temperature strength. Fracture strain of directionally solidified(DS) $Fe_3A1$ is about 1%at room temperature, but is about 60%at. $T_C$(550^{\circ}C)$. Tensile strength of DS alloy is lower than that of as-cast alloy at $530^{\circ}C$ and $430^{\circ}C$. Failure mode at room temperature varies from transgranular fracture to intergranular fracture with the addition of Al. the failure mode also varies from mixed(transgranular+ intergranular) mode between room temperature and $500^{\circ}C$ to intergranular mode above $550^{\circ}C$

  • PDF

용융드래그방법으로 제작한 마그네슘합금 박판의 특성에 미치는 기본적인 공정조건 확립 (Establishment of Fundamental Process Conditions on Properties of Magnesium Alloy Thin Plates Fabricated by the Melt Drag Method)

  • 한창석;이찬우
    • 한국재료학회지
    • /
    • 제32권7호
    • /
    • pp.326-331
    • /
    • 2022
  • AZ31 magnesium alloy was used to manufacture a thin plate using a melt drag method. The effects of roll speed, molten metal temperature, and molten metal height, which are the basic factors of the melt drag method, on the surface shape, the thickness of the thin plate, Vickers hardness, and microstructure of the thin plate were investigated. It was possible to manufacture AZ31 magnesium alloy thin plate at the roll speed range of 1 to 90 m/min. The thickness of the thin plate, manufactured while changing only the roll speed, was about 1.8 to 8.8 mm. The shape of the solidified roll surface was affected by two conditions, the roll speed and the molten metal height, and the Vickers hardness of the manufactured magnesium alloy thin plate value ranged from Hv38~Hv60. The microstructure of the thin plate produced by this process was an equiaxed crystal and showed a uniform grain size distribution. The grain size was greatly affected by the contact state between the molten metal and the solidification roll, and the amount of reactive solids and liquids scraped at the same time as the thin plate. The average grain size of the thin plate fabricated in the range of these experimental conditions changed to about 50-300 ㎛.

PBF와 DED 공정으로 제조된 17-4PH 스테인리스 강의 미세조직 및 기계적 특성 평가 (Evaluation of Microstructure and Mechanical Properties in 17-4PH Stainless Steels Fabricated by PBF and DED Processes)

  • 윤종천;이민규;최창영;김동혁;정명식;최용진;김다혜
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.83-88
    • /
    • 2018
  • Additive manufacturing (AM) technologies have attracted wide attention as key technologies for the next industrial revolution. Among AM technologies using various materials, powder bed fusion (PBF) processes and direct energy deposition (DED) are representative of the metal 3-D printing process. Both of these processes have a common feature that the laser is used as a heat source to fabricate the 3-D shape through melting of the metal powder and solidification. However, the material properties of the deposited metals differ when produced by different process conditions and methods. 17-4 precipitation-hardening stainless steel (17-4PH SS) is widely used in the field of aircraft, chemical, and nuclear industries because of its good mechanical properties and excellent corrosion resistance. In this study, we investigated the differences in microstructure and mechanical properties of deposited 17-4PH SS by PBF and DED processes, including the heat treatment effect.

진공 정밀주조한 Inconel 713C 합금의 조직과 기계적 성질에 미치는 열처리의 영향 (The Effect of Heat Treatment on the Microstructures and Mechanical Properties of Inconel 713C Alloy Vacuum Investment Castings)

  • 유병기;최학규;박흥일;정해용
    • 한국주조공학회지
    • /
    • 제40권2호
    • /
    • pp.16-24
    • /
    • 2020
  • The effect of a heat treatment on the microstructure and mechanical properties of Inconel 713C alloy vacuum investment castings were investigated. The microstructure of the as-cast state was observed, showing well-developed dendrite structures and distributed carbide particles and solidified massive precipitates in the grain or grain boundary during solidification, in this case the γ′ phase and MC particles. During a heat treatment, the γ phase matrix was reinforced by solid solution elements, carbide particles from the film morphology precipitated along the grain boundary, and many micro-precipitates of second γ′ phases 0.2 ㎛~2 ㎛ in size were newly formed in the γ phase matrix according to SEM-EDS analysis results. The tensile strength at a high temperature (850℃) decreased slightly becoming comparable with the room-temperature result, while the hardness value of the specimen after the vacuum heat treatment increased by approximately 19%, becoming similar to that of the as-cast condition. However, the impact values at room temperature and low temperature (-196℃) were approximated; this alloy was mostly not affected by an impact at a low temperature. In the observations of the fracture surface morphologies of the specimens after the tensile tests, the fractures at room temperature were a mix of brittle and ductile fractures, and an intergranular fracture in the inter-dendrite structure and some dimples in the matrix were observed, whereas the fractures at high temperatures were ductile fractures, with many dimples arising due to precipitation. It was found that a reinforced matrix and precipitates of carbide and the γ′ phase due to the heat treatment had significant effects, contributing greatly to the excellent mechanical properties.

알루미늄 폐캔을 이용한 2차지금의 미세조직 및 집합조직에 미치는 합금원소의 영향 (Effect of Alloying Elements on the Microstructure and Texture of the Secondary Ingots made by Al Used Beverage Cans)

  • 박차용;고흥석;강석봉
    • 자원리싸이클링
    • /
    • 제9권2호
    • /
    • pp.46-52
    • /
    • 2000
  • 사용한 알루미늄 캔을 다시 캔으로 재활용 하는 단계는 폐캔의 수집, 폐쇄, 선별, 도료제거, 용해 및 2차지금을 제작하는 단계와 이 2차지금을 이용하여 열처리, 열간 및 냉간압연, 중간소둔처리 등을 거쳐 다시 캔을 성형하는 단계로 나눌수 있다. 본 연구에서는 2차지금에서 켄성형까지의 과정에서 중요한 요소인 미세조직 및 열간압연후의 집합조직에 미치는 합금원소의 영향을 조사하였다. 폐캔을 이용하여 다시 캔을 제조하기 위한 판재가공에서는 주조시 형성된 공석상들의 구형화와 $\alpha$상 ($Al_{12}(Fe, Mn)_3Si)$)으로의 상변화 제어가 필요한데, 열처리에 의한 석출거동을 조사하여 $615^{\circ}C$, 5시간 균질화 처리조건에서 최적의 미세조직을 얻을 수 있었다. 2차자금을 이용하여 캔소재를 제조한 결과, Mn량이 증가할수록 고용효과에 의해 전기전도도는 감소하고 집합조직의 발달이 억제되었다. Si 과 Fe는 금속간화합물 형태로 존재하며, 함량이 증가할수록 석출효과에 의해 전기전도도가 증가하고 변형집합조직의 발달이 촉진되었다. 캔은 냉간압연후 다른처리 없이 바로 제조되기 때문에 집합조직의 제어는 열간압연 및 소둔처리 단계에서 제어되어야 한다.

  • PDF

Investigation of Spark Plasma Sintering Temperature on Microstructure and Thermoelectric Properties of p-type Bi-Sb-Te alloys

  • Han, Jin-Koo;Shin, Dong-won;Madavali, Babu;Hong, Soon-Jik
    • 한국분말재료학회지
    • /
    • 제24권2호
    • /
    • pp.115-121
    • /
    • 2017
  • In this work, p-type Bi-Sb-Te alloys powders are prepared using gas atomization, a mass production powder preparation method involving rapid solidification. To study the effect of the sintering temperature on the microstructure and thermoelectric properties, gas-atomized powders are consolidated at different temperatures (623, 703, and 743 K) using spark plasma sintering. The crystal structures of the gas-atomized powders and sintered bulks are identified using an X-ray diffraction technique. Texture analysis by electron backscatter diffraction reveals that the grains are randomly oriented in the entire matrix, and no preferred orientation in any unique direction is observed. The hardness values decrease with increasing sintering temperature owing to a decrease in grain size. The conductivity increases gradually with increasing sintering temperature, whereas the Seebeck coefficient decreases owing to increases in the carrier mobility with grain size. The lowest thermal conductivity is obtained for the bulk sintered at a low temperature (603 K), mainly because of its fine-grained microstructure. A peak ZT of 1.06 is achieved for the sample sintered at 703 K owing to its moderate electrical conductivity and sustainable thermal conductivity.

분사성형법에 의한 SiC입자강화 알루미늄 복합재료의 제조 I. 미세조직에 대한 고찰 (Formation of SiC Particle Reinforced Al Metal Matrix Composites by Spray Forming Process(I. Microstructure))

  • 박종성;김명호;배차헌
    • 한국주조공학회지
    • /
    • 제13권4호
    • /
    • pp.369-381
    • /
    • 1993
  • Aluminum alloy(AC8A) matrix composites reinforced with SiC particles(10% in vol.) were fabricated by Centrifugal Spray Deposition(CSD) process. The microstructures were investigated in order to evaluate both the mixing mode between aluminum matrix and SiC particles, and the effect of SiC particles on the cooling behaviours of droplets during flight and preforms deposited. A non-continuum mathematical calculation was performed to explain and to quantify the evolution of microstructures in the droplets and preforms deposited. Conclusions obtained are as follows; 1. The powders produced by CSD process showed, in general, ligament type, and more than 60% of the powders produced were about 300 to 850 um in size. 2. AC8A droplets solidified during flight showed fine dendritic structure, but AC8A droplets mixed with SiC particles showed fine equiaxed grain structure, and eutectic silicon were formed to crystallize granularly between fine aluminum grains. 3. SiC particles seem to act as a nucleation sites for pro-eutectic silicon during solidification of AC8A alloy. 4. The microstructure of composite powders formed by CSD process showed particle embedded type, and resulted in dispersed type microstructure in preforms deposited. 5. The pro-eutectic silicon crystallized granularly between fine aluminum grains seem to prohibit grains from growth during spray deposition process. 6. The interfacial reactions between aluminum matrix and SiC particles were not observed from the deposit performs and the solidified droplets. 7. The continuum model seem to be useful in connecting the processing parameters with the resultant microstructures. From these results, it was concluded that the fabrication of aluminum matrix composites reinforced homogeneously with SiC particles was possible.

  • PDF