DOI QR코드

DOI QR Code

Establishment of Fundamental Process Conditions on Properties of Magnesium Alloy Thin Plates Fabricated by the Melt Drag Method

용융드래그방법으로 제작한 마그네슘합금 박판의 특성에 미치는 기본적인 공정조건 확립

  • Han, Chang-Suk (Dept. of ICT Automotive Engineering, Hoseo University) ;
  • Lee, Chan-Woo (Dept. of ICT Automotive Engineering, Hoseo University)
  • 한창석 (호서대학교 자동차ICT공학과) ;
  • 이찬우 (호서대학교 자동차ICT공학과)
  • Received : 2022.03.23
  • Accepted : 2022.07.21
  • Published : 2022.07.27

Abstract

AZ31 magnesium alloy was used to manufacture a thin plate using a melt drag method. The effects of roll speed, molten metal temperature, and molten metal height, which are the basic factors of the melt drag method, on the surface shape, the thickness of the thin plate, Vickers hardness, and microstructure of the thin plate were investigated. It was possible to manufacture AZ31 magnesium alloy thin plate at the roll speed range of 1 to 90 m/min. The thickness of the thin plate, manufactured while changing only the roll speed, was about 1.8 to 8.8 mm. The shape of the solidified roll surface was affected by two conditions, the roll speed and the molten metal height, and the Vickers hardness of the manufactured magnesium alloy thin plate value ranged from Hv38~Hv60. The microstructure of the thin plate produced by this process was an equiaxed crystal and showed a uniform grain size distribution. The grain size was greatly affected by the contact state between the molten metal and the solidification roll, and the amount of reactive solids and liquids scraped at the same time as the thin plate. The average grain size of the thin plate fabricated in the range of these experimental conditions changed to about 50-300 ㎛.

Keywords

References

  1. J. W. Liu, S. Q. Lu, K. L. Wang, G. F. Li and X. Xiao, Adv. Mater. Res. : AMR., 690/693, 16 (2013).
  2. W. Wang, Q. Pan, X. Wang, Y. Sun, L. Long and Z. Huang, Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing, 731, 195 (2018). https://doi.org/10.1016/j.msea.2018.06.047
  3. H. Bessemer, J. Franklin Inst., 80, 387 (1865). https://doi.org/10.1016/0016-0032(65)90257-7
  4. T. Haga and K. Takahashi, J. Mater. Proc. Tech., 157/158, 706 (2004). https://doi.org/10.1016/j.jmatprotec.2004.07.129
  5. K. Suzuki, S. Kumai, Y. Saito, A. Sato and T. Haga, Mater. Trans., 45, 403 (2004). https://doi.org/10.2320/matertrans.45.403
  6. Y. Shi, M. Yuan, Z. Li and P. La, Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing, 759, 391 (2019). https://doi.org/10.1016/j.msea.2019.05.054
  7. H. Watari, S. Izawa, K. Davey, M. T. Rasgado and T. Haga, J. Mater. Proc. Tech., 155/156, 1662 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.323
  8. L. Liu, S. Yu, Y. Niu and E. Liu, J. Alloys Compd., 835, 155198 (2020). https://doi.org/10.1016/j.jallcom.2020.155198
  9. F. Arash and J. M. Sabaghi, Inter. J. Mater. Res., 106, 282 (2015). https://doi.org/10.3139/146.111183
  10. O. J. Ilegbusi and J. Szekely, J. Colloid Interface Sci., 125, 567 (1988). https://doi.org/10.1016/0021-9797(88)90023-9
  11. K. Matsuzaki, K. Hatsukano, Y. Torisaka, K. Hanada, T. Shimizu and M. Kato, Mater. Sci. Forum., 539/543, 1747 (2007).
  12. S. Kumar, N. H. Babu, G. M. Scamans, Z. Fan and K. A. Q. O'Reilly, Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing, 45, 2842 (2014).
  13. C. S. Han and Y. J. Kwon, Korean J. Mater. Res., 31, 511 (2021). https://doi.org/10.3740/MRSK.2021.31.9.511
  14. S. Sidelnikov, A. Samchuk, D. Voroshilov, Y. Gorbunov, V. Ber, R. Galiev, R. Sokolov and V. Bespalov, Key Eng. Mater., 805, 25 (2019). https://doi.org/10.4028/www.scientific.net/kem.805.25
  15. Y. Wang, B. Wang, Y. Xu, M. Fang, Z. Wu, W. Zhu, J. Hong and C. Li, J. Chinese Chem. Soc., 64, 188 (2017). https://doi.org/10.1002/jccs.201600787