DOI QR코드

DOI QR Code

Investigation of Spark Plasma Sintering Temperature on Microstructure and Thermoelectric Properties of p-type Bi-Sb-Te alloys

  • Han, Jin-Koo (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University) ;
  • Shin, Dong-won (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University) ;
  • Madavali, Babu (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University) ;
  • Hong, Soon-Jik (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University)
  • Received : 2017.03.31
  • Accepted : 2017.04.21
  • Published : 2017.04.28

Abstract

In this work, p-type Bi-Sb-Te alloys powders are prepared using gas atomization, a mass production powder preparation method involving rapid solidification. To study the effect of the sintering temperature on the microstructure and thermoelectric properties, gas-atomized powders are consolidated at different temperatures (623, 703, and 743 K) using spark plasma sintering. The crystal structures of the gas-atomized powders and sintered bulks are identified using an X-ray diffraction technique. Texture analysis by electron backscatter diffraction reveals that the grains are randomly oriented in the entire matrix, and no preferred orientation in any unique direction is observed. The hardness values decrease with increasing sintering temperature owing to a decrease in grain size. The conductivity increases gradually with increasing sintering temperature, whereas the Seebeck coefficient decreases owing to increases in the carrier mobility with grain size. The lowest thermal conductivity is obtained for the bulk sintered at a low temperature (603 K), mainly because of its fine-grained microstructure. A peak ZT of 1.06 is achieved for the sample sintered at 703 K owing to its moderate electrical conductivity and sustainable thermal conductivity.

Keywords

References

  1. M. S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial and P. Gogna: Adv. Mater., 19 (2007) 1043. https://doi.org/10.1002/adma.200600527
  2. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzidis: Science, 303 (2004) 818. https://doi.org/10.1126/science.1092963
  3. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren: Science, 320 (2008) 634. https://doi.org/10.1126/science.1156446
  4. J. H. Son, M. W. Oh, B. S. Kim, S. D. Park, B. K. Min, M. H. Kim and H. W. Lee: J. Alloys Compd., 566 (2013) 168. https://doi.org/10.1016/j.jallcom.2013.03.062
  5. P. Rimal, S. M. Yoon, E. B. Kim, C. H. Lee, S. J. Hong: J. Korean Powder Metall. Inst., 23 (2016) 2.
  6. D. Liu, J. Stotzel, M. Seyring, M. Drue, X. Li, R. Schmeche and M. Rettenmayr: Cryst. Growth Des., 16 (2016) 617. https://doi.org/10.1021/acs.cgd.5b01015
  7. O. Yamashita and H. Odahara: J. Mater. Sci., 41 (2006) 323. https://doi.org/10.1007/s10853-005-2209-z
  8. X. Tang, W. Xie, H. Li, W. Zhao, Q. Zhang and M. Niino: Appl. Phys. Lett., 90 (2007) 012102. https://doi.org/10.1063/1.2425007
  9. Y. Lan, B. Poudel, Y. Ma, D. Wang, M. S. Dresselhaus, G. Chen and Z. Ren: Nano Lett., 9 (2009) 1419. https://doi.org/10.1021/nl803235n
  10. W. Xie, J. He, H. J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J. R. D. Copley, C. M. Brown, Q. Zhang and T. M. Tritt: Nano Lett., 10 (2010) 3283. https://doi.org/10.1021/nl100804a
  11. S. J. Hong, Y. S. Lee, J. W. Byeon and B.S. Chun: J. Alloys Compd., 414 (2006) 146. https://doi.org/10.1016/j.jallcom.2005.03.115
  12. B. Madavali, H. S. Kim, K. H. Lee, Y. Isoda, F. Gascoin and S. J. Hong: Mater Des., 112 (2016) 485. https://doi.org/10.1016/j.matdes.2016.09.089
  13. K. F. Cai, C. W. Nan, M. Schmuecker and E. Mueller: J. Alloys Compd., 350 (2003) 313. https://doi.org/10.1016/S0925-8388(02)00993-3
  14. M. L. Lwin, S. Yoon, B. Madavali, C. H. Lee, S. J. Hong: J. Korean Powder Metall. Inst., 23 (2016) 120. https://doi.org/10.4150/KPMI.2016.23.2.120
  15. L. P. Hu, H. Gao, X. Liu, H. Xie, J. Shen, T. Zhu, and X. Zhao: J. Mater. Chem., 22 (2012) 16484. https://doi.org/10.1039/c2jm32916f
  16. W. T. Chiu, C. L. Chen and Y. Y Chen: Sci. Rep., 6 (2016) 23143. https://doi.org/10.1038/srep23143
  17. X. A. Fan, J. Y. Yang, R. G. Chen, H. S. Yun, W. Zhu, S. Q. Bao and X. K. Duan: J. Phys. D : Appl. Phys., 39 (2006) 740. https://doi.org/10.1088/0022-3727/39/4/021
  18. J. Li, Q. Tan, J. F. Li, D.W. Liu, F. Li, Z. Y. Li, M. Zou and K. Wang: Adv. Funct. Mater., 23 (2013) 4317. https://doi.org/10.1002/adfm.201300146
  19. N. Keawprak, Z. M. Sun, H. Hashimoto and M. W. Barsoum: J. Alloys Compd., 397 (2005) 236. https://doi.org/10.1016/j.jallcom.2004.11.073