• Title/Summary/Keyword: Solid-state battery

Search Result 130, Processing Time 0.029 seconds

Sentiment Analysis and Issue Mining on All-Solid-State Battery Using Social Media Data (소셜미디어 분석을 통한 전고체 배터리 감성분석과 이슈 탐색)

  • Lee, Ji Yeon;Lee, Byeong-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.11-21
    • /
    • 2022
  • All-solid-state batteries are one of the promising candidates for next-generation batteries and are drawing attention as a key component that will lead the future electric vehicle industry. This study analyzes 10,280 comments on Reddit, which is a global social media, in order to identify policy issues and public interest related to all-solid-state batteries from 2016 to 2021. Text mining such as frequency analysis, association rule analysis, and topic modeling, and sentiment analysis are applied to the collected global data to grasp global trends, compare them with the South Korean government's all-solid-state battery development strategy, and suggest policy directions for its national research and development. As a result, the overall sentiment toward all-solid-state battery issues was positive with 50.5% positive and 39.5% negative comments. In addition, as a result of analyzing detailed emotions, it was found that the public had trust and expectation for all-solid-state batteries. However, feelings of concern about unresolved problems coexisted. This study has an academic and practical contribution in that it presented a text mining analysis method for deriving key issues related to all-solid-state batteries, and a more comprehensive trend analysis by employing both a top-down approach based on government policy analysis and a bottom-up approach that analyzes public perception.

The Effect of Substrate Roughness on the Fabrication and Performance of All-Solid-State Thin-Film Lithium-Ion Battery (기판의 표면 거칠기 특성이 전고상 리튬박막 이차전지의 제작 및 전기화학 특성에 미치는 영향)

  • Kim, Jong Heon;Xiao, Cheng-Fan;Go, Kwangmo;Lee, Kyung Jin;Kim, Hyun-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.437-443
    • /
    • 2019
  • All-solid-state thin-film lithium-ion batteries are important in the development of next-generation energy storage devices with high energy density. However, thin-film batteries have many challenges in their manufacturing procedure. This is because there are many factors, such as substrate selection, to consider when producing the thin film multilayer structure. In this study, we compare the fabrication and performance of all-solid-state thin-film lithium-ion batteries with a $LiNi_{0.5}Mn_{1.5}O_4$ cathode/LiPON solid electrolyte/$Li_4Ti_5O_{12}$ anode structure using stainless steel and Si substrates with different surface roughness. We demonstrate that the smoother the surface of the substrate, the thinner the thickness of the all-solid-state thin-film lithium-ion battery that can be made, and as a result, the corresponding electrochemical characteristics can be improved.

Spark Plasma Sintering Technique and Application for All-Solid-State Batteries (전고상 전지를 위한 스파크 플라스마 소결 기술과 응용)

  • Lee, Seokhee
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.170-181
    • /
    • 2019
  • All-solid-state batteries have received increasing attention because of their high safety aspect and high energy and power densities. However, the inferior solid-solid interfaces between solid electrolyte and active materials in electrode, which cause high interfacial resistance, reduce ion and electron transfer rate and limit battery performance. Recently, spark plasma sintering is emerging as a promising technique for fabricating solid electrolytes and composite-electrodes. Herein, this paper focuses on the overview of spark plasma sintering to fabricate solid electrolytes and composite-electrodes for all-solid-state batteries. In the end, future opportunities and challenges associated with SPS technique for all-solid-state batteries are described.

Fabrication and Characterization of LIPON Electrolyte Thin Film for All Solid State Thin Film Battery (박막전지용 LIPON 전해질 박막의 제조 및 특성 평가)

  • 손봉희;전은정;남상철;조원일;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.228-231
    • /
    • 1999
  • The preparation and electrical properties of LIPON electrolyte were investigated in order to fabricate all solid state thin film battery. The LIPON thin film was deposited by r.f. sputtering of Li$_3$PO$_4$ target in O$_2$-N$_2$ mixtures. The LIPON deposited at N$_2$+10% O$_2$ ratio had a conductivity at 25 $^{\circ}C$ of 1.8${\times}$10$\^$-6/S/cm. The ion conductivity of the LIPON films decreased as the O$_2$ content of the process gas increased.

  • PDF

Individual Charge Equalization Converter with Parallel Primary Winding of Transformer for Series Connected Lithium-Ion Battery Strings in an HEV

  • Kim, Chol-Ho;Park, Hong-Sun;Kim, Chong-Eun;Moon, Gun-Woo;Lee, Joong-Hui
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.472-480
    • /
    • 2009
  • In this paper, a charge equalization converter with parallel-connected primary windings of transformers is proposed. The proposed work effectively balances the voltage among Lithium-Ion battery cells despite each battery cell has low voltage gap compared with its state of charge (SOC). The principle of the proposed work is that the equalizing energy from all battery strings moves to the lowest voltage battery through the isolated dc/dc converter controlled by the corresponding solid state relay switch. For this research a prototype of four Lithium-Ion battery cells is optimally designed and implemented, and experimental results show that the proposed method has excellent cell balancing performance.

Enhanced Cathode/Sulfide Electrolyte Interface Stability Using an Li2ZrO3 Coating for All-Solid-State Batteries

  • Lee, Jun Won;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.176-183
    • /
    • 2018
  • In this study, a $Li_2ZrO_3$ coated $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ (NCA) cathode was applied to an all-solid-state cell employing a sulfide-based solid electrolyte. Sulfide-based solid electrolytes are preferable for all-solid-state cells because of their high ionic conductivity and good softness and elasticity. However, sulfides are very reactive with oxide cathodes, and this reduces the stability of the cathode/electrolyte interface of all-solid-state cells. $Li_2ZrO_3$ is expected to be a suitable coating material for the cathode because it can suppress the undesirable reactions at the cathode/sulfide electrolyte interface because of its good stability and high ionic conductivity. Cells employing $Li_2ZrO_3$ coated NCA showed superior capacity to those employing pristine NCA. Analysis by X-ray photoelectron spectroscopy and electron energy loss spectroscopy confirmed that the $Li_2ZrO_3$ coating layer suppresses the propagation of S and P into the cathode and the reaction between the cathode and the sulfide solid electrolyte. These results show that $Li_2ZrO_3$ coating is promising for reducing undesirable side reactions at the cathode/electrolyte interface of all-solid-state-cells.

Characterization on the electrochemical and structural properties of polyanion cathode material Li2MnSiO4/C depending on the synthesis process (합성 방법에 따른 Li2MnSiO4/C 다중음이온 양극활물질의 구조 및 전기화학적 성질)

  • Lee, Young-Lim;Chung, Young-Min;Song, Min-Seob;Ju, Jeh-Beck;Cho, Won-Il
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.103-108
    • /
    • 2011
  • $Li_2MnSiO_4$/C was synthesized by solid state reaction and solution synthesis with sucrose for carbon source. The X-ray diffraction patterns of solid state reaction indicates small amount of impurities. By FE-SEM and HR-TEM, solution synthesis comprised several tens of nanometer comparing to 500~600 nm of $Li_2MnSiO_4$/C prepared by solid state reaction. The $Li_2MnSiO_4$/C prepared by solution synthesis show better electrochemical performance than solid state reaction. The first charge-discharge capacity are 236, 189 mAh/g respectively by solution synthesis. But its cycle performance was poor as yet and its capacity retention was 62% after 10 cycles.