• Title/Summary/Keyword: Solid-liquid interface

Search Result 223, Processing Time 0.029 seconds

Feasibility Study of Laser Contact Angle Measurement for Nano-fiber Characterization (나노섬유의 특성분석을 위한 레이저 접촉각 측정기의 효율성 연구)

  • 신경인;안선훈;김성훈
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.5
    • /
    • pp.554-559
    • /
    • 2003
  • A newly developed contact angle measurement instrument by laser beam projection allows for rapid and direct determination of contact angles. The instrument may have a possibility to characterize newly developed nano-fibers. When the laser beam impinges on an edge of an interface of liquid and solid, projected beam were split across and made two straight lines on a tangent screen. From the result, it could measure the contact angle directly by reading the angle between two split beams. The purpose of this study was to prove reliability and reproducibility of the contact angle measurement instrument by laser beam projection compare to the conventional one by microscope through the comparative experiment and questionnaire. Test samples were selected by consideration of hydrophilic and hydrophobic, such as nylon 6 and polypropylene, respectively. The laser contact angle measurement has accurate, fast and convenient method to measure contact angle, and it can be a unique method to characterize nano-fibers.

Effects of the Alloy Length on the Growth Behavior of Directionally Solidified Al-15Cu-lMg Alloy (Al-15Cu-1Mg합금의 일방향응고시 시편의 길이변화에 따른 응고거동변화)

  • Moon, Cheol-Hee
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.379-384
    • /
    • 1997
  • Al-15Cu-lMg alloys have been directionally solidified in 3mm diameter alumina tubes under the conditions of $760^{\circ}C$ of furnace temperature and 12 cm/hr of furnace moving velocity(V). By analyzing the evolution of the temperature profiles along the alloy length, the position of the solid/liquid interface, temperature gradient(G) and local growth velocity (R) were determined. These growth characteristics were compared for 6, 10, 14 cm length alloys. Steady state growth region was obtained in 15 cm length alloy, not in 6, 10 cm.

  • PDF

Application of On-Line SPE-LC/MSD to Measure Perfluorinated Compounds (PFCs) in Water (On-Line SPE-LC/MSD 시스템을 이용한 수중의 과불화 화합물(PFCs) 분석)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Jung, Jong-Moon;Jang, Seung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.75-83
    • /
    • 2013
  • We applied a sensitive method based on on-line solid-phase extraction (SPE) and liquid chromatography/mass spectrometry (LC/MSD) using an electrospray interface for the determination of eleven perfluorinated compounds (PFCs) in water. The on-line connection suppressed the target loss by keeping the cartridge from drying, which resulted in improvement of the recovery and saving of the analytical time. For the on-line solid-phase extraction of 10 mL water samples, recoveries were between $80.4{\pm}5.2%{\sim}109.5{\pm}1.4%$ and limit of quantification (LOQ) were 3.6~15.9 ng/L for the PFCs. The total PFCs concentrations of the tributaries and main stream of Nakdong River water samples were in the range of $8.0{\sim}678.6{\mu}g/L$.

Thermodynamic Control in Competitive Anchoring of N719 Sensitizer on Nanocrystalline $TiO_2$ for Improving Photoinduced Electrons

  • Lim, Jong-Chul;Kwon, Young-Soo;Song, In-Young;Park, Sung-Hae;Park, Tai-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.68-69
    • /
    • 2011
  • The process of charge transfer at the interface between two semiconductors or between a metal and a semiconductor plays an important role in many areas of technology. The optimization of such devices requires a good theoretical description of the interfaces involved. This, in turn, has motivated detailed mechanistic studies of interfacial charge-transfer reactions at metal/organic, organic/organic, and organic/inorganic semiconductor heterojunctions. Charge recombination of photo-induced electron with redox species such as oxidized dyes or triiodide or cationic HTM (hole transporting materials) at the heterogeneous interface of $TiO_2$ is one of main loss factors in liquid junction DSSCs or solid-state DSSCs, respectively. Among the attempts to prevent recombination reactions such as insulating thin layer and lithium ions-doped hole transport materials and introduction of co-adsorbents, although co-adsorbents retard the recombination reactions as hydrophobic energy barriers, little attention has been focused on the anchoring processes. Molecular engineering of heterogeneous interfaces by employing several co-adsorbents with different properties altered the surface properties of $TiO_2$ electrodes, resulting to the improved power conversion efficiency and long-term stability of the DSSCs. In this talk, advantages of the coadsorbent-assisted sensitization of N719 in preparation of DSSCs will be discussed.

  • PDF

Study on Electrochemical Performances of PEO-based Composite Electrolyte by Contents of Oxide Solid Electrolyte (산화물계 고체전해질 함량에 따른 PEO 기반 복합전해질 전기화학 성능 연구)

  • Lee, Myeong Ju;Kim, Ju Young;Oh, Jimin;Kim, Ju Mi;Kim, Kwang Man;Lee, Young-Gi;Shin, Dong Ok
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.80-87
    • /
    • 2018
  • Safety issues in Li-ion battery system have been prime concerns, as demands for power supply device applicable to wearable device, electrical vehicles and energy storage system have increased. To solve safety problems, promising strategy is to replace organic liquid electrolyte with non-flammable solid electrolyte, leading to the development of all-solid-state battery. However, relative low conductivity and high resistance from rigid solid-solid interface hinder a wide application of solid electrolyte. Composite electrolytes composed of organic and inorganic parts could be alternative solution, which in turn bring about the increase of conductivity and conformal contact at physically rough interfaces. In our study, composite electrolytes were prepared by combining poly(ethylene oxide)(PEO) and $Li_7La_3Zr_2O_{12}$ (LLZO). The crystallinity, morphology and electrochemical performances were investigated with the control of LLZO contents from 0 wt% to 50 wt%. From the results, it is concluded that optimum content and uniform dispersion of LLZO in polymer matrix are significant to improve overall conductivity of composite electrolyte.

Interface Capturing for Immiscible Two-phase Fluid Flows by THINC Method (THINC법을 이용한 비혼합 혼상류의 경계면 추적)

  • Lee, Kwang-Ho;Kim, Kyu-Han;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.277-286
    • /
    • 2012
  • In the numerical simulation of wave fields using a multi-phase flow model that considers simultaneous flows of materials with different states such as gas, liquid and solid, there is need of an accurate representation of the interface separating the fluids. We adopted an algebraic interface capturing method called tangent of hyperbola for interface-capturing(THINC) method for the capture of the free-surface in computations of multi-phase flow simulations instead of geometrical-type methods such a volume of fluid(VOF) method. The THINC method uses a hyperbolic tangent functions to represent the surface, and compute the numerical flux for the fluid fraction functions. One of the remarkable advantages of THINC method is its easy applicability to incorporate various numerical codes based on Navier-Stokes solver because it does not require the extra geometric reconstruction needed in most of VOF-type methods. Several tests were carried out in order to investigate the advection of interfaces and to verify the applicability of the THINC method to wave fields based on the one-field model for immiscible two-phase flows (TWOPM). The numerical results revealed that the THINC method is able to track the interface between air and water separating the fluids although its algorithm is fairly simple.

Numerical Study of Impact of Microdroplet Containing Nanoparticles (나노입자를 포함한 미세액적의 충돌에 대한 수치적 연구)

  • Roh, Sang-Eun;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.609-617
    • /
    • 2012
  • The impact, spreading and recoil processes of a nanoparticle-laden droplet impacting on a horizontal solid surface are numerically investigated by solving the conservation equations for mass, momentum, energy and mass fraction. The liquid-air interface is tracked using a level-set method that is modified to include the effect of contact angle hysteresis at the wall. The species transport equation including a thermal diffusion term is additionaly solved to determine the nanoparticle distribution in the droplet. The effect of nanoparticle concentration and contact angle are also studied.

Hot carrier induced carrier transport property on InAs nanowires

  • Kim, Taeok;Park, Sungjin;Kang, Hang-Kyu;Bae, Jungmin;Cho, M.H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.362.1-362.1
    • /
    • 2016
  • InAs nanowires were synthesized by a vapor-liquid-solid method with InAs powder. The composition and crystalline structure of nanowires were confirmed by energy-dispersive spectroscopy (EDS) and high resolution transmission electron microscopy (HRTEM), respectively. The thermal conduction of nanowires was investigated by the optical method using Raman spectroscopy: i.e., the local temperature on nanowire was determined by laser heating. As temperature increased, the Raman peaks are shifted to low frequency and broadened. The temperature dependent Raman scattering experiments was realized on InAs nanowires with different percentages of zinc-blende and wurtzite structure. The temperature dependence on the nanowire structure has been successfully obtained: the phonon scattering was more increased in InAs heretostructure nanowires, compared to the InAs nanowires with homostructure. The result strongly suggests that the thermal conduction can be effectively controlled by ordered interface without any decrease in electrical conduction.

  • PDF

Detecting of Scuffing Faliure using Acoustic Emission (AE센서를 이용한 스커핑 손상의 감시)

  • Kim, Jae-Hwan;Kim, Tae-Wan;Cho, Yong-Joo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.34-39
    • /
    • 2002
  • The surfaces of machine components in sliding contact such as bearing, gears and pistons etc. frequently operate under the condition of mixed lubrication due to high load, high speed and slip. These machine components often undergo the inception of scuffing in practical application. The scuffing failure is a critical problem in modern machine components, especially for the requirement of high efficiency and small size. However, it is difficult to find a universal mechanism to explain all scuffing phenomena because there are so many factors affecting the onset of scuffing. In this study, scuffing experiments are conducted using Acoustic Emission(AE) measurement by an indirect sensing approach to detect scuffing failure. Acoustic Emission(AE) signal has been widely utilized to monitor the interaction at the friction interface. Using AE signals we can get an indication about the state of the friction processes, about the quality of solid and liquid layers eon the contacting surfaces in real time. The FFT(Fast Fourier Transform)analyses of the AE signal are used to understand the interfacial interaction and the relationship between the AE signal and the state of contact is presented

  • PDF

Hot Cracking Susceptibility in Welds of High Strength Al Alloys by Using DCSP-GTAW (DCSP-GTAW에 의한 고력 Al합금의 고온균열감수성에 대한 연구)

  • Ha Ryeo-Sun;Jung Byong-Ho;Park Hwa-Soon
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.65-72
    • /
    • 2004
  • The tendency and degree of hot cracking of high strength 5083, 6N01 and 7N01 Al alloy welds by using DCSP-GTAW through modified Varestraint test and autogenous butt welding were investigated. In hot cracking test, 6N01 alloy showed the highest susceptibility to hot cracking in the weld metal and HAZ. Cracking susceptibilities generally increased with increase of solidification temperature range of the base metal and bead penetration-to-width ratio of the weld metal. The cracks in welds of the alloys vertically formed to solid-liquid interface and propagated along with columnar grain boundaries. The fracture facets of cracks showed the typical morphology of solidification crack observed as dendritic structures. Especially, in 6N01 alloy, liquation cracks which were due to elements of Si, Fe and Mg also observed in HAZ near fusion boundary. In butt welding of different Al alloys, the bead crack was mainly occurred in the welds of 6N01, 7N01 and other Al alloys together with 6N01 or 7N01. In the butt welds of 7N01, it was found that the component of Cu had an effect on the higher susceptibility to the hot cracking.