DOI QR코드

DOI QR Code

Interface Capturing for Immiscible Two-phase Fluid Flows by THINC Method

THINC법을 이용한 비혼합 혼상류의 경계면 추적

  • Lee, Kwang-Ho (Industry and Academia Cooperation Foundation, Kwandong University) ;
  • Kim, Kyu-Han (Department of Civil Engineering, Kwandong University) ;
  • Kim, Do-Sam (Department of Civil Engineering, Korea Maritime University)
  • Received : 2012.08.06
  • Accepted : 2012.08.22
  • Published : 2012.08.31

Abstract

In the numerical simulation of wave fields using a multi-phase flow model that considers simultaneous flows of materials with different states such as gas, liquid and solid, there is need of an accurate representation of the interface separating the fluids. We adopted an algebraic interface capturing method called tangent of hyperbola for interface-capturing(THINC) method for the capture of the free-surface in computations of multi-phase flow simulations instead of geometrical-type methods such a volume of fluid(VOF) method. The THINC method uses a hyperbolic tangent functions to represent the surface, and compute the numerical flux for the fluid fraction functions. One of the remarkable advantages of THINC method is its easy applicability to incorporate various numerical codes based on Navier-Stokes solver because it does not require the extra geometric reconstruction needed in most of VOF-type methods. Several tests were carried out in order to investigate the advection of interfaces and to verify the applicability of the THINC method to wave fields based on the one-field model for immiscible two-phase flows (TWOPM). The numerical results revealed that the THINC method is able to track the interface between air and water separating the fluids although its algorithm is fairly simple.

기체와 액체의 유동 및 고체의 변형을 동시에 고려할 수 있는 혼상류모델을 이용하여 파동장을 해석하는 경우, 서로 다른 비혼합의 유체 경계면의 시간변형을 고정도로 추적하는 것이 대단히 중요하다. 본 연구에서는 경계면의 추적에 있어서 VOF(Volume of Fluid)법으로 대표되는 경계면 형상의 재구축이 필요한 Geometrical-type의 경계추적법의 대신에 Algebraic-type의 경계추적법인 THINC(Tangent of Hyperbola for INterface-Capturing)법을 적용하였다. THINC법은 경계면에 대한 형상의 구축이 필요하지 않으므로 VOF법에 비해 비교적 간단한 알고리즘을 가지며, 기존의 Navier-Stokes solver에로 적용성이 용이한 장점을 갖는다. 본 연구에서는 THINC법의 기본적인 이류특성을 고찰하고, 혼상류수치모델인 TWOPM(one-field Model for immiscible TWO-Phase flows)과 결합한 수치모델을 파동장에 적용하여 비혼합 혼상류에서 경계면의 추적능을 검토하였다. 그 결과, 혼상류의 경계면 추적에 있어서 상대적으로 간단한 알고리즘의 THINC법이 기존의 VOF법과 유사한 정도를 갖는 해석법이라는 것을 확인할 수 있었고, 따라서 향후 기포의 연행을 동반하는 쇄파 및 쇄파력의 해석 등에 그의 적용성이 기대된다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. 이광호, 김도삼, Y. Harry (2008). 단파의 전파에 따른 수위 및 유속변화의 특성에 관한 연구. 대한토목학회논문집, 28(5B), 575-589.
  2. 이광호, 정성호, 하선욱, 김도삼 (2010a). 2열 불투과성 사각형 잠제를 이용한 단주기파랑 및 고립파의 제어. 한국해안.해양공학회 논문집, 22(4), 203-214.
  3. 이광호, 최현석, 백동진, 김도삼 (2010b). 슬리트케이슨제에 의한 반사율과 구조물에 작용하는 파압에 관한 2차원 및 3차원해석. 한국해안.해양공학회 논문집, 22(6), 374-386.
  4. 오남선, 최익창, 김대근, 정신택 (2011). FLOW-3D 모형을 이용한 용승류 모의. 한국해안.해양공학회 논문집, 23(6), 451-457.
  5. 허동수, 이우동 (2011). 3차원 무반사 수치파동수조에서 경사입사파의 조파기법 개발. 한국해안.해양공학회 논문집, 23(6), 401-406.
  6. Arnason, H. (2005). Interaction between an incident bore and a free-standing coastal structure, Ph.D Dissertation, University of Washongton, USA.
  7. Biausser, B., Guignard, S., Marcer, R. and Fraunie, P. (2004). 3D two phase flows numerical simulations by SL-VOF method. Int. J. Numerical Methods in Fluids, 45, 581-604. https://doi.org/10.1002/fld.708
  8. Brackbill, J.U., Kothe, D.B. and Xemach, C. (1992). A continuum method for modeling surface tension. J. Comput. Phys., 100, 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
  9. Harlow, F.H. and Welch, J.E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids, 8, 2182-2189. https://doi.org/10.1063/1.1761178
  10. Hirt, C.W. and Amsden, A.A. and Cook, J.L. (1974). An arbitrary Lagrangian-Eulerian computing method for all speeds. J. Comput. Phys., 14, 227-253. https://doi.org/10.1016/0021-9991(74)90051-5
  11. Hirt, C.W. and Nichols, B.D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39, 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  12. Kunugi, T. (2000). MARS for multiphase calculation, CFD J., 9(1), IX-563.
  13. Losada, I. J., Patterson, M. D. and Losada, M. A. (1997). Harmonic generation past a submerged porous step. Coastal Eng., 31, 281-304. https://doi.org/10.1016/S0378-3839(97)00011-2
  14. Martin, J. C. and W. J. Moyce, W.J. (1952). An experimental study of collapse of liquid columns on a rigid horizontal plane. Phil. Trans. Roy. Soc. London A,. 244, 312-324. https://doi.org/10.1098/rsta.1952.0006
  15. Nakamura, T. and Yabe, T. (1999). Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space. Comp. Phys. Comm., 120, 122-154. https://doi.org/10.1016/S0010-4655(99)00247-7
  16. Osher, S. and Sethian, J.A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79, 12-49. https://doi.org/10.1016/0021-9991(88)90002-2
  17. Smagorinsky, J. (1963). General circulation experiments with the primitive equations. Mon. Weather Rev., 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  18. Ubbink, O. and Issa, R.I. (1999). Method for capturing sharp fluid interfaces on arbitrary meshes, J. Comput. Phys., 153, 26-50. https://doi.org/10.1006/jcph.1999.6276
  19. Ushijima, S. Kuroda, N. and Nezu, I. (2008). 3D numerical prediction for interaction between free-surface flows and elastic bodies with MICS and finite element method, Annual J. Hydraulic Eng., 52, 1033-1038. (in Japanese) https://doi.org/10.2208/prohe.52.1033
  20. Wang, L.Q., Li, Z.F., Wu. D.Z. and Hao, Z.R. (2007). Transient flow around an impulsively started cylinder using a dynamic mesh method. Int. J. Comput. Fluid Dynmic., 21(3-4), 127-135. https://doi.org/10.1080/10618560701493872
  21. Wu, II-M and Yang, S. (1989). A new class of accurate high resolution schemes for conservation laws in two dimensions. IMPACT of Comput. Sci. and Eng., 1, 217-259. https://doi.org/10.1016/0899-8248(89)90011-6
  22. Xiao, F., Honma, Y. and Kono, T. (2005). A simple algebraric interface capturing scheme using hyperbolic tangent function, Int. J. Numerical Methods in Fluids, 48, 1023-1040. https://doi.org/10.1002/fld.975
  23. Youngs, D.L. (1982). Time-dependent multimaterial flow with large fluid distortion. Numerical Methods for Fluid Dynamics, Academic Press, New York, 273-285.