• Title/Summary/Keyword: Solid-liquid Interface

Search Result 226, Processing Time 0.036 seconds

Effects of the Superlattices on STM Imaging of Self-organized Substituted Alkyl Chain Monolayers on a Graphite Surface

  • Son, Seung Bae;Hahn, Jae Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4155-4160
    • /
    • 2012
  • We characterized the physisorption of p-iodo-phenyl octadecyl ether molecules (I-POE) onto superlattice regions of graphite surfaces using scanning tunneling microscopy (STM). The formation of self-organized I-POE monolayers does not affect the overall structures of moir$\acute{e}$ patterns and their modulation periods. However, the packing density of the I-POE monolayer and the orientations of lamella structures were sensitive to the underlying superlattice structure. Depending on the bias voltage, the STM images selectively showed moir$\acute{e}$ pattern, I-POE layer, or both. Reflecting the local density of states at a certain energy level, the STM images thereby revealed the relative energy level scale of the superlattice with respect to the molecular orbitals of I-POE.

Effects of Freezing Conditions on the Concentration-Efficiency in the Progressive Freeze-Concentration (Progressive Freezing에 의한 동결 농축법에 있어서의 농축효과에 미치는 동결조건의 영향)

  • 배승권
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.6
    • /
    • pp.984-989
    • /
    • 1995
  • The concentration-efficiencyh of blue dextran solution in the progressive freeze-concentration was related to the freezing conditions such as the freezing speed and the stirring speed in the solution phase. From the theoreticla balance equation of heat and mass transfer at freezing front, the relationship between the freezing conditions and the ice structure at freezing front was drived. A high freeze-concentration efficiency was obtained under the operating conditions represented by a low speed of freezing and a high speed of stirring. The operating conditions were related to a smooth solid-liquid interface and these results were well explained by the theoretical equation. Effect of the solute component size on the concentration efficiency in the progressive freezeconcentration was also tested. The concentration efficiency of latex particles showed a lower value than that of blue dextran, however, its difference was insignificant.

  • PDF

Feasibility Study of Laser Contact Angle Measurement for Nano-fiber Characterization (나노섬유의 특성분석을 위한 레이저 접촉각 측정기의 효율성 연구)

  • 신경인;안선훈;김성훈
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.5
    • /
    • pp.554-559
    • /
    • 2003
  • A newly developed contact angle measurement instrument by laser beam projection allows for rapid and direct determination of contact angles. The instrument may have a possibility to characterize newly developed nano-fibers. When the laser beam impinges on an edge of an interface of liquid and solid, projected beam were split across and made two straight lines on a tangent screen. From the result, it could measure the contact angle directly by reading the angle between two split beams. The purpose of this study was to prove reliability and reproducibility of the contact angle measurement instrument by laser beam projection compare to the conventional one by microscope through the comparative experiment and questionnaire. Test samples were selected by consideration of hydrophilic and hydrophobic, such as nylon 6 and polypropylene, respectively. The laser contact angle measurement has accurate, fast and convenient method to measure contact angle, and it can be a unique method to characterize nano-fibers.

Effects of the Alloy Length on the Growth Behavior of Directionally Solidified Al-15Cu-lMg Alloy (Al-15Cu-1Mg합금의 일방향응고시 시편의 길이변화에 따른 응고거동변화)

  • Moon, Cheol-Hee
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.379-384
    • /
    • 1997
  • Al-15Cu-lMg alloys have been directionally solidified in 3mm diameter alumina tubes under the conditions of $760^{\circ}C$ of furnace temperature and 12 cm/hr of furnace moving velocity(V). By analyzing the evolution of the temperature profiles along the alloy length, the position of the solid/liquid interface, temperature gradient(G) and local growth velocity (R) were determined. These growth characteristics were compared for 6, 10, 14 cm length alloys. Steady state growth region was obtained in 15 cm length alloy, not in 6, 10 cm.

  • PDF

Application of On-Line SPE-LC/MSD to Measure Perfluorinated Compounds (PFCs) in Water (On-Line SPE-LC/MSD 시스템을 이용한 수중의 과불화 화합물(PFCs) 분석)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Jung, Jong-Moon;Jang, Seung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.75-83
    • /
    • 2013
  • We applied a sensitive method based on on-line solid-phase extraction (SPE) and liquid chromatography/mass spectrometry (LC/MSD) using an electrospray interface for the determination of eleven perfluorinated compounds (PFCs) in water. The on-line connection suppressed the target loss by keeping the cartridge from drying, which resulted in improvement of the recovery and saving of the analytical time. For the on-line solid-phase extraction of 10 mL water samples, recoveries were between $80.4{\pm}5.2%{\sim}109.5{\pm}1.4%$ and limit of quantification (LOQ) were 3.6~15.9 ng/L for the PFCs. The total PFCs concentrations of the tributaries and main stream of Nakdong River water samples were in the range of $8.0{\sim}678.6{\mu}g/L$.

Thermodynamic Control in Competitive Anchoring of N719 Sensitizer on Nanocrystalline $TiO_2$ for Improving Photoinduced Electrons

  • Lim, Jong-Chul;Kwon, Young-Soo;Song, In-Young;Park, Sung-Hae;Park, Tai-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.68-69
    • /
    • 2011
  • The process of charge transfer at the interface between two semiconductors or between a metal and a semiconductor plays an important role in many areas of technology. The optimization of such devices requires a good theoretical description of the interfaces involved. This, in turn, has motivated detailed mechanistic studies of interfacial charge-transfer reactions at metal/organic, organic/organic, and organic/inorganic semiconductor heterojunctions. Charge recombination of photo-induced electron with redox species such as oxidized dyes or triiodide or cationic HTM (hole transporting materials) at the heterogeneous interface of $TiO_2$ is one of main loss factors in liquid junction DSSCs or solid-state DSSCs, respectively. Among the attempts to prevent recombination reactions such as insulating thin layer and lithium ions-doped hole transport materials and introduction of co-adsorbents, although co-adsorbents retard the recombination reactions as hydrophobic energy barriers, little attention has been focused on the anchoring processes. Molecular engineering of heterogeneous interfaces by employing several co-adsorbents with different properties altered the surface properties of $TiO_2$ electrodes, resulting to the improved power conversion efficiency and long-term stability of the DSSCs. In this talk, advantages of the coadsorbent-assisted sensitization of N719 in preparation of DSSCs will be discussed.

  • PDF

Study on Electrochemical Performances of PEO-based Composite Electrolyte by Contents of Oxide Solid Electrolyte (산화물계 고체전해질 함량에 따른 PEO 기반 복합전해질 전기화학 성능 연구)

  • Lee, Myeong Ju;Kim, Ju Young;Oh, Jimin;Kim, Ju Mi;Kim, Kwang Man;Lee, Young-Gi;Shin, Dong Ok
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.80-87
    • /
    • 2018
  • Safety issues in Li-ion battery system have been prime concerns, as demands for power supply device applicable to wearable device, electrical vehicles and energy storage system have increased. To solve safety problems, promising strategy is to replace organic liquid electrolyte with non-flammable solid electrolyte, leading to the development of all-solid-state battery. However, relative low conductivity and high resistance from rigid solid-solid interface hinder a wide application of solid electrolyte. Composite electrolytes composed of organic and inorganic parts could be alternative solution, which in turn bring about the increase of conductivity and conformal contact at physically rough interfaces. In our study, composite electrolytes were prepared by combining poly(ethylene oxide)(PEO) and $Li_7La_3Zr_2O_{12}$ (LLZO). The crystallinity, morphology and electrochemical performances were investigated with the control of LLZO contents from 0 wt% to 50 wt%. From the results, it is concluded that optimum content and uniform dispersion of LLZO in polymer matrix are significant to improve overall conductivity of composite electrolyte.

Interface Capturing for Immiscible Two-phase Fluid Flows by THINC Method (THINC법을 이용한 비혼합 혼상류의 경계면 추적)

  • Lee, Kwang-Ho;Kim, Kyu-Han;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.277-286
    • /
    • 2012
  • In the numerical simulation of wave fields using a multi-phase flow model that considers simultaneous flows of materials with different states such as gas, liquid and solid, there is need of an accurate representation of the interface separating the fluids. We adopted an algebraic interface capturing method called tangent of hyperbola for interface-capturing(THINC) method for the capture of the free-surface in computations of multi-phase flow simulations instead of geometrical-type methods such a volume of fluid(VOF) method. The THINC method uses a hyperbolic tangent functions to represent the surface, and compute the numerical flux for the fluid fraction functions. One of the remarkable advantages of THINC method is its easy applicability to incorporate various numerical codes based on Navier-Stokes solver because it does not require the extra geometric reconstruction needed in most of VOF-type methods. Several tests were carried out in order to investigate the advection of interfaces and to verify the applicability of the THINC method to wave fields based on the one-field model for immiscible two-phase flows (TWOPM). The numerical results revealed that the THINC method is able to track the interface between air and water separating the fluids although its algorithm is fairly simple.

Solid Electrolyte Composed of Poly(vinyl alcohol) and Oligo(3,4-ethylenedioxythiophene) Having a Crosslinked Structure (가교 구조를 갖는 poly(vinyl alcohol)과 oligo(3,4-ethylenedioxy-thiophene)으로 이루어진 고체 전해질)

  • Gyo Jun Song;Min Su Kim;Nam-Ju Jo
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.303-308
    • /
    • 2024
  • Currently, lithium secondary batteries have been used as medium- or large-sized energy sources such as electric vehicles and energy storage system (ESS) due to their high energy and eco-friendly characteristics. Currently commercialized lithium secondary batteries do not fully meet the demands for high energy density and safety. Many studies on solid electrolytes are being conducted to satisfy these requirements. In order to commercialize a solid electrolyte, it is important to supplement the low ion conductivity and high interface resistance with an electrode compared to the organic liquid electrolyte. Therefore, in this study, oligo(3,4-ethylenedioxythiophene (EDOT)) is added to poly(vinyl alcohol) (PVA), which is a polymer matrix with ion conductivity and sticky characteristics, to decrease the interfacial resistance with the same type of polythiophene (PTh)-based electrode. In addition, the addition of porous silicon dioxide (SiO2) filler improves lithium salt dissociation ability and increases ionic conductivity. And the electrochemical stability of the solid electrolyte, which has been lowered due to additives, is improved by introducing a cross-linked structure using boric acid (BA).

Numerical Study of Impact of Microdroplet Containing Nanoparticles (나노입자를 포함한 미세액적의 충돌에 대한 수치적 연구)

  • Roh, Sang-Eun;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.609-617
    • /
    • 2012
  • The impact, spreading and recoil processes of a nanoparticle-laden droplet impacting on a horizontal solid surface are numerically investigated by solving the conservation equations for mass, momentum, energy and mass fraction. The liquid-air interface is tracked using a level-set method that is modified to include the effect of contact angle hysteresis at the wall. The species transport equation including a thermal diffusion term is additionaly solved to determine the nanoparticle distribution in the droplet. The effect of nanoparticle concentration and contact angle are also studied.