• Title/Summary/Keyword: Solid-electrolyte

Search Result 698, Processing Time 0.031 seconds

Li-Ion Traction Batteries for All-Electric Vehicle (전 전기자동차용 리튬이온 이차전지 기술동향)

  • Cho, Mann;Nah, Do-Baek;Kil, Sang-Chul;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2011
  • The production capacity of EV models should be sufficient to achieve the goal of one million EVs by 2015. Large-Format lithium-ion battery are expected to find a prominent role as ideal electrochemical storage systems in traction power train for sustainable vehicles such as all-electric vehicles. This review focuses first on the present status of production lithium-ion battery technology and cooperative relations of between battery and EV makers, then on its near future development.

Efficient removal of 17β-estradiol using hybrid clay materials: Batch and column studies

  • Thanhmingliana, Thanhmingliana;Lalhriatpuia, C.;Tiwari, Diwakar;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.203-210
    • /
    • 2016
  • Hybrid materials were obtained modifying the bentonite (BC) and local clay (LC) using hexadecyltrimethylammonium bromide (HDTMA) or the clay were pillared with aluminum followed by modification with HDTMA. The materials were characterized by the SEM, FT-IR and XRD analytical tools. The batch reactor data implied that the uptake of $17{\beta}$-estradiol (E2) by the hybrid materials showed very high uptake at the neutral pH region. However, at higher and lower pH conditions, slightly less uptake of E2 was occurred. The uptake of E2 was insignificantly affected changing the sorptive concentration from 1.0 to 10.0 mg/L and the background electrolyte (NaCl) concentrations from 0.0001 to 0.1 mol/L. Moreover, the sorption of E2 by these hybrid materials was fairly efficient since within 30 mins of contact time, an apparent equilibrium between solid and solution was achieved, and the data was best fitted to the PSO (pseudo-second order) and FL-PSO (Fractal-like-pseudo second order) kinetic models compared to the PFO (pseudo-first order) model. The fixed-bed column results showed that relatively high breakthrough volume was obtained for the attenuation of E2 using these hybrid materials, and the loading capacity of E2 was estimated to be 75.984, 63.757, 58.965 and 49.746 mg/g for the solids BCH, BCAH, LCH and LCAH, respectively.

Photoelectrochemical Water Splitting on a Delafossite CuGaO2 Semiconductor Electrode

  • Lee, Myeongsoon;Kim, Don;Yoon, Yong Tae;Kim, Yeong Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3261-3266
    • /
    • 2014
  • A pellet of polycrystalline $CuGaO_2$ with a delafossite structure was prepared from $Ga_2O_3$ and CuO by high-temperature solid-state synthesis. The $CuGaO_2$ pellet was a p-type semiconductor for which the electrical conductivity, carrier density, carrier mobility and Seebeck coefficient were $5.34{\times}10^{-2}{\Omega}^{-1}cm^{-1}$, $3.5{\times}10^{20}cm^{-3}$, $9.5{\times}10^{-4}cm^2V^{-1}s^{-1}$ at room temperature, and $+360{\mu}V/K$, respectively. It also exhibited two optical transitions at about 2.7 and 3.6 eV. The photoelectrochemical properties of the $CuGaO_2$ pellet electrode were investigated in aqueous electrolyte solutions. The flat-band potential of this electrode, determined using a Mott-Schottky plot, was +0.18 V vs SCE at pH 4.8 and followed the Nernst equation with respect to pH. Under UV light illumination, a cathodic photocurrent developed, and molecular hydrogen simultaneously evolved on the surface of the electrode due to the direct reduction of water without deposition of any metal catalyst.

Development of $YSZ/La_0.85S_r0.15MnO_3$ Composite Electrodes for Solid Oxide Fuel Cells (고체산화물 연료전지용 $YSZ/La_0.85S_r0.15MnO_3$계 복합전극의 개발)

  • 윤성필;현상훈;김승구;남석우;홍성안
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.982-990
    • /
    • 1999
  • YSZ/LSM composite cathode was fabricated by dip-coating of YSZ sol on the internal pore surface of a LSM cathode followed by sintering at low temperature (800-100$0^{\circ}C$) The YSZ coating significantly increased the TPB(Triple Phase Boundary) where the gas the electrode and the electrolyte were in contact with each other. Sinter the formation of resistive materials such as La2Zr2O7 or SrZrO3 was prevented due to the low processing temperature and TPB was increased due to the YSZ film coating the electrode resistance (Rel) was reduced about 100 times compared to non-modified cathode. From the analysis of a.c impedance it was shown that microstructural change of the cathode caused by YSZ film coating affected the oxygen reduction reaction. In the case of non-modified cathode the RDS (rate determining step) was electrode reactions rather than mass transfer or the oxygen gas diffusion in the experimental conditions employed in this study ($600^{\circ}C$-100$0^{\circ}C$ and 0,01-1 atm of Po2) for the YSZ film coated cathode however the RDS involved the oxygen diffusion through micropores of YSZ film at high temperature of 950-100$0^{\circ}C$ and low oxygen partial pressure of 0.01-0.03 atm.

  • PDF

Defect Chemistry of the Mixed Conducting Cage Compound Ca12Al14O33

  • Janek, J.;Lee, D.K.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.99-105
    • /
    • 2010
  • The electrical transport properties of mayenite ($Ca_{12}Al_{14}O_{33}$ or $12CaO{\cdot}7Al_2O_3$; mostly abbreviated as $C_{12}A_7$) can be controlled in a wide range by varying the oxygen deficiency: At high temperatures mayenite becomes either an oxygen solid electrolyte, a mixed ionic/electronic conductor or an inorganic electride with metal-like properties upon chemical reduction (removing oxygen). The underlying defect chemistry can be understood on the basis of a relatively simple model-despite the complex cage structure: A point defect model based on the assumption that the framework $[Ca_{12}Al_{14}O_{32}]^{2+}$ acts as a pseudo-donor describes well the high temperature transport properties. It accounts for the observed conductivity plateau at higher oxygen activities and also describes the experimentally observed oxygen activity dependence of the electronic conductivity with -1/4 slope at temperatures between 800 and $1000^{\circ}C$. Doping effects in mayenite are still not well explored, and we review briefly the existing data on doping by different elements. Hydration of mayenite plays a crucial role, as Mayenite is hygroscopic, which may be a major obstacle for technical applications.

Functional Li-M (Ti, Al, Co, Ni, Mn, Fe)-O Energy Materials

  • Kim, In Yea;Shin, Seo Yoon;Ko, Jea Hwan;Lee, Kang Soo;Woo, Sung Pil;Kim, Dong Kyu;Yoon, Young Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.9-22
    • /
    • 2017
  • Many new functional materials have been studied for efficient production and storage of energy. Many new materials such as sodium-based and sulfide-based materials have been proposed for energy storage, but research on Li batteries is still dominant. Due to the influence of environmental concerns regarding nuclear energy, interest in and research on fusion power are steadily increasing. For the commercialization of nuclear fusion, a design standard based on a considerable level of physical analysis and modeling is proposed. Nevertheless, limitations of existing materials in nuclear fusion environments limit practical applications. Tritium propagation material for continuous fusion reaction is one of the core materials, and therefore research on this material is being carried out intermittently. The key material for Li-based energy storage and tritium generation is the functional material Li-M-O. In this review, a structural description of functional Li-M-O system materials and technical trends for its applications are introduced.

A Study on Electrical Modeling for Charge/Discharge Analysis of Li-Polymer Battery (리튬폴리머전지의 충/방전 특성해석을 위한 진기적모델링에 관한 연구)

  • 최해룡;반한식;목형수;신우석;고장면
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.435-442
    • /
    • 2000
  • Started upon Its discovery by Wright et al in 1773, studies on the solid polymer electrolyte are being carried out vigorously. So, models of Li-polymer battery have been developed through R-L-C components combination and PSpice functional block in this parer. The impedance characteristics of Li-polymer battery with R-L-C components are presented. Simulation results using PSpice functional model are compared with measured charge/discharge characteristics. Also, as to the number of cycle(charge/discharge), coulomb efficiency of Li-polymer is evaluated through experimental results.

  • PDF

CdSe/$TiO_2$ electrode of photoelectrochemical[PEC] cell for hydrogen production from water using solar energy (태양광과 물로부터 수소생산을 위한 광전기화학전지의 CdSe/$TiO_2$ 전극)

  • Lee, Eun-Ho;Jung, Kwang-Deog;Joo, Oh-Shim
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.130-135
    • /
    • 2005
  • Cadmium selenide is one of the group IIb-VI compounds, which is the promising semiconductor material due to its wide range of technological applications in optoelectronic devices such as photoelectrochemical cells, solid state solar cells, thin film photoconductors etc. CdSe has optical band gap of 1.7-1.8eV and proper conduction band edge for water splitting. CdSe films are coated with small thickness(20-50nm) nanocrystalline $TiO_2$ film by electrodeposition or chemical bath deposition methods and PEC properties of CdSe and CdSe/$TiO_2$ sandwich structure are studied. The photoactivity of CdSe and CdSe/$TiO_2$ films deposited on titanium substrate is studied in aqueous electrolyte of 1M NaOH solution. Photocurrent and photovoltage obtained were of the order of 2-4 mA/$cm^2$ and 0.5V, respectively, under the intensity of illumination of 100 mW/$cm^2$.

The effect of Ni content on the discharge characteristics of Zr-V-Mn-Ni hydrogen storage alloy electrode (Zr-V-Mn-Ni 수소저장합금전극의 방전특성에 미치는 Ni 양의 효과에 관한 연구)

  • Lee, Sang-Min;Kim, Dong-Myung;Jung, Jae-Han;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.1
    • /
    • pp.11-21
    • /
    • 1997
  • $ZrV_{0.7}Mn_{0.5}Ni_{1.2}$ alloy is attractive for anode material in Ni/MH secondary battery because of its large hydrogen storage capacity in gas-solid reaction and long cycling durability in KOH electrolyte. In this work, in order to further improve the discharge performance of this alloy electrode, the alloy was annealed by optimal condition which is for 12 hours at $1000^{\circ}C$. The alloy annealed under optimal condition had higher rate capability and discharge capacity than as-cast one. The microstructure of the as-cast and annealed alloy was investigated by scanning electron microscopy and energy dispersive spectroscopy. Ni content in the matrix was increased, being this homogenized after annealing. Additionally, The measurement of the surface area by B.E.T. analysis showed that there was little difference as-cast and annealed alloy. Therefore, improvement in the rate capability of the annealed alloy is due to increase of Ni content in the matrix.

  • PDF

Electrochemical Properties and Estimation on Active Material LiMnO2 Synthesis for Secondary

  • Wee, Sung-Dong;Kim, Jong-Uk;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.2
    • /
    • pp.35-39
    • /
    • 2003
  • This paper is contents on the orthorhombic crystalline calcined by the solid phase method with LiMnO$_2$ thin film structured as the result which an average pore diameter of power was 132.3${\AA}$ in porosity analysis. Voltage ranges are able to get the properties of charge and discharge for experimental results of LiMnO$_2$ thin film were 2.2V 4.3V. The current density and scan speed were 0. 1㎃/$\textrm{cm}^2$ and 0.2㎷/sec respectively. Properties of the charge and discharge are obtained by optimum experiment condition parameters. Li dense ratio of the LiMnO$_2$ thin film that discharged capacities were 87㎃h/g have been 96.9[ppm] at 670.784[nm] wavelength. The dense ratio of Mn analyzed to 837[ppm] at 257.610[nm] wavelength. It can be estimated the quality of the LiMnO$_2$ thin film as that the wrong LiMnO$_2$ thin film pulled up from cell of electrolyte and became dry it at 800$^{\circ}C$. The results of SEM and XRD were the same as that of original researchers.