DOI QR코드

DOI QR Code

Functional Li-M (Ti, Al, Co, Ni, Mn, Fe)-O Energy Materials

  • Kim, In Yea (Department of Chemical and Biological Engineering, Gachon University) ;
  • Shin, Seo Yoon (Department of Chemical and Biological Engineering, Gachon University) ;
  • Ko, Jea Hwan (Department of Chemical and Biological Engineering, Gachon University) ;
  • Lee, Kang Soo (Department of Materials Science and Engineering, Yonsei University) ;
  • Woo, Sung Pil (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Dong Kyu (Department of Chemical and Biological Engineering, Gachon University) ;
  • Yoon, Young Soo (Department of Chemical and Biological Engineering, Gachon University)
  • Received : 2017.01.17
  • Accepted : 2017.01.17
  • Published : 2017.01.31

Abstract

Many new functional materials have been studied for efficient production and storage of energy. Many new materials such as sodium-based and sulfide-based materials have been proposed for energy storage, but research on Li batteries is still dominant. Due to the influence of environmental concerns regarding nuclear energy, interest in and research on fusion power are steadily increasing. For the commercialization of nuclear fusion, a design standard based on a considerable level of physical analysis and modeling is proposed. Nevertheless, limitations of existing materials in nuclear fusion environments limit practical applications. Tritium propagation material for continuous fusion reaction is one of the core materials, and therefore research on this material is being carried out intermittently. The key material for Li-based energy storage and tritium generation is the functional material Li-M-O. In this review, a structural description of functional Li-M-O system materials and technical trends for its applications are introduced.

Keywords

References

  1. M. S. Islam and C. A. J. Fisher, "Lithium and Sodium Battery Cathode Materials: Computatianal Insights into Voltage, Diffusion and Nanostructural Properties," Chem. Soc. Rev., 43 [1] 185-204 (2014). https://doi.org/10.1039/C3CS60199D
  2. H. J Kim, U. C. Chung, Y. U. Jeong, J. H. Lee, and J. J. Kim, "Crystal Structures, Electrical Conductivities and Electrochemical Properties of $LiCo_{1-X}Mg_xO_2$(x=0.03) for Secondary Lithium Ion Batteries," J. Korean Ceram. Soc., 42 [9] 602-6 (2005). https://doi.org/10.4191/KCERS.2005.42.9.602
  3. K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, "$Li_xCoO_2$ (0 https://doi.org/10.1016/0025-5408(80)90012-4
  4. S. H. Kim, K. B. Shim, J. P. Ahn, and C. S. Kim, "Structural Stability during Charge-Discharge Cycles in Zr- Doped $LiCoO_2$ Powders," J. Korean Ceram. Soc., 45 [3] 167- 171 (2008) https://doi.org/10.4191/KCERS.2008.45.3.167
  5. C. M. Julien, A. Mauger, K. Zaghib, and H. Groult, "Comparative Issues of Cathode Materials for Li-Ion Batteries," Inorganics, 2 [1] 132-54 (2014). https://doi.org/10.3390/inorganics2010132
  6. M. S. Whittingham, "Lithium Batteries and Cathode Materials," Chem. Rev., 104 [10] 4271-301 (2004). https://doi.org/10.1021/cr020731c
  7. T. Ohzuku, M. Kitakawa, and T. Hirai, "Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell III. XRay Diffractional Study on the Reduction of Spinel-Related Manganese Dioxide," J. Electrochem. Soc., 137 [3] 769-75 (1990). https://doi.org/10.1149/1.2086552
  8. D. H. Jang, Y. J. Shin, and S. M. Oh, "Dissolution of Spinel Oxides and Capacity Losses in 4 V Li/$LixMn_2O_4$ Cells," J. Electrochem. Soc., 143 [7] 2204-11 (1996). https://doi.org/10.1149/1.1836981
  9. T. Inoue and M. Sano, "An Investigation of Capacity Fading of Manganese Spinels Stored at Elevated Temperature," J. Electrochem. Soc., 145 [11] 3704-7 (1998). https://doi.org/10.1149/1.1838862
  10. Y. Xia and M. Yoshio, "An Investigation of Lithium Ion Insertion into Spinel Structure Li-Mn-O Compound," J. Electrochem. Soc., 143 [3] 825-33 (1996). https://doi.org/10.1149/1.1836544
  11. Y. Xia, T. Sakai, T. Fujieda, X. Yang, X. Sun, Z. Ma, J. McBreen, and M. Yoshio, "Correlating Capacity Fading and Structural Changes in $Li_{1+x}Mn_{2-y}O_{4-}$ Spinel Cathode Material: A Systematic Study on the Effects of Li/Mn Ratio and Oxygen Deficiency," J. Electrochem. Soc., 148 [7] 723- 29 (2001). https://doi.org/10.1149/1.1376117
  12. M. M. Thackeray, Y. S. Horn, A. J. Kahian, K. D. Kepler, E. Skinner, J. T. Vaughey, and S. A. Hackney, "Structural Fatigue in Spinel Electrodes in High Voltage (4 V) Li/$Li_xMn_2O_4$ Cells," Electrochem. Soc. Solid-State Lett., 1 [1] 7- 9 (1998).
  13. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries," J. Electrochem. Soc., 144 [4] 1188-94 (1997). https://doi.org/10.1149/1.1837571
  14. S. Y. Chung, J. T. Bloking, and Y. M. Chiang, "Electronically Conductive Phospho-olivines as Lithium Storage Electrodes," Nat. Mater., 1 [2] 123-28 (2002). https://doi.org/10.1038/nmat732
  15. W. Ojczyk, J. Marzec, K. Swierczek, W. Zajac, M. Molenda, R. Dziembaj, and J. Molenda, "Studies of Selected Synthesis Procedures of the Conducting $LiFePO_4$-Based Composite Cathode Materials for Li-Ion Batteries," J. Power Sources, 173 [2] 700-6 (2007). https://doi.org/10.1016/j.jpowsour.2007.05.055
  16. H. Liu, J. Xie, and K. Wang, "Synthesis and Characterization of $LiFePO_4/(C+Fe_2P)$ Composite Cathodes," Solid State Ionics, 179 [27] 1768-71 (2008). https://doi.org/10.1016/j.ssi.2008.01.065
  17. Y. Lin, M. X. Gao, D. Zhu, Y. F. Liu, and H. G. Pan, "Effects of Carbon Coating and Iron Phosphides on the Electrochemical Properties of $LiFePO_4/C$," J. Power Sources, 184 [2] 444-48 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.026
  18. H. Liu and D. Tang, "The Low Cost Synthesis of Nanoparticles $LiFePO_4/C$ Composite for Lithium Rechargeable Batteries," Solid State Ionics, 179 [33] 1897-901 (2008). https://doi.org/10.1016/j.ssi.2008.05.005
  19. B. W. Kang and G. Ceder, "Battery Materials for Ultrafast Charging and Discharging," Nature, 458 [7235] 190-93 (2009). https://doi.org/10.1038/nature07853
  20. N. Yabuuchi and T. Ohzuku, "Novel Lithium Insertion Material of $LiCo_{1/3}Ni_{1/3}Mn_{1/3}O_2$ for Advanced Lithium-ion Batteries," J. Power Sources, 119-121 171-74 (2003). https://doi.org/10.1016/S0378-7753(03)00173-3
  21. R. H. Shin, S. I. Son, S. M. Lee, Y. S. Han, Y. D. Kim, and S. S. Ryu, "Effect of $Li_3BO_3$ Additive on Densification and Ion Conductivity of Garnet-Type $Li_7La_3ZrO_{12}$ Solid Electrolytes of All-Solid-State Lithium-Ion Batteries," J. Korean Ceram. Soc., 53 [1] 712-718 (2016). https://doi.org/10.4191/kcers.2016.53.6.712
  22. I. Y. Kim, S. H. Jee, and Y. S. Yoon "High-Speed Deposited Amorphous Li-B-W-O Thin Film Electrolytes for All- Solid-State Batteries," Sci. Adv. Mater., 8 [1] 96-102 (2016). https://doi.org/10.1166/sam.2016.2608
  23. Y. Zhao and L. L. Daemen, "Superionic Conductivity in Lithium-Rich Anti-Perovskites," J. Am. Chem. Soc., 134 [36] 15042-47 (2012). https://doi.org/10.1021/ja305709z
  24. A. Emly, E. Kioupakis, and A. V. Ven. "Phase Stability and Transport Mechanisms in Antiperovskite $Li_3OCl$ and $Li_3OBr$ Superionic Conductors," Chem. Mater., 25 [23] 4663-70 (2013). https://doi.org/10.1021/cm4016222
  25. F. Lalere, J. B. Lerichea, M. Courty, S. Boulineau, V. Viallet, C. Masquelier, and V. Seznec, "An All-Solid State NASICON Sodium Battery Operating at$ 200^{\circ}C$," J. Power Sources, 247 975-80 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.051
  26. J. C. Bachman, S. Muy, A. Grimaud, H. S. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, and Y. S. Horn, "Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction," Chem. Rev., 116 [1] 140-62 (2016). https://doi.org/10.1021/acs.chemrev.5b00563
  27. I. Kokal, Solid State Electrolytes for All Solid State 3D Lithium ion Batteries, pp. 9-34, in Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, 2012.
  28. H. B Kang, N. H. Cho, and Y. H. Kim, "Effects of Heat- Treatment Condition on the Characteristics of Sintering and Electrical Behaviors of Two NASICON Compounds," J. Korean Ceram. Soc., 34 [7] 685-92 (1997).
  29. H. El-Shinawi, C. Greaves, and J. Janek, "Sol-Gel Synthesis and Room-Temperature Properties of ${\alpha}-LiZr_2(PO_4)_3$," RSC Adv., 5 [22] 17054-59 (2015). https://doi.org/10.1039/C4RA16804F
  30. K. M. Kim, D. O. Shin, and Y. G. Lee, "Effects of Preparation Conditions on the Ionic Conductivity of Hydrothermally Synthesized $Li_{1+x}Al_xTi_{2-x}(PO_4)_3$ Solid Electrolytes," Electrochim. Acta, 176 1364-73 (2015). https://doi.org/10.1016/j.electacta.2015.07.170
  31. K. Arbi, W. Bucheli, R. Jiménez, and J. Sanz, "High Lithium ion Conducting Solid Electrolytes based on NASICON $Li_{1+x}Al_xM_{2−x}(PO_4)_3$ Materials (M = Ti, Ge and $0{\leq}x{\leq}0.5$)," J. Eur. Ceram. Soc., 35 [5] 1477-84 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.11.023
  32. K. Arbi, S. Mandal, J. M. Rojo, and J. Sanz, "Dependence of Ionic Conductivity on Composition of Fast Ionic Conductors $Li_{1+x}Ti_{2-x}Al_x(PO_4)_3$, $0{\leq}x{\leq}0.7$. A Parallel NMR and Electric Impedance Study," Chem. Mater., 14 [3] 1091-97 (2002). https://doi.org/10.1021/cm010528i
  33. D. H. Kothari and D. K. Kanchan, "Effect of Doping of Trivalent Cations $Ga^{3+}$, $Sc^{3+}$, $Y^{3+}$ in $Li-{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ (LATP) System on $Li^+$ Ion Conductivity," Phys. B, 501 90-4 (2016). https://doi.org/10.1016/j.physb.2016.08.020
  34. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Y. Adachi, "Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate," J. Electrochem. Soc., 137 [4] 1023-27 (1990). https://doi.org/10.1149/1.2086597
  35. X. L. Wu, J. Zong, H. Xu, W. Wang, and X. J. Liu, "Effects of LAGP Electrolyte on Suppressing Polysulfide Shuttling in Li-S Cells," RSC Adv., 6 [62] 57346-56 (2016). https://doi.org/10.1039/C6RA08048K
  36. D. Rettenwander, C. A. Geiger, M. Tribus, P. Tropper, and G. Amthauer, "A Synthesis and Crystal Chemical Study of the Fast Ion Conductor $Li_{7−3x}Ga_xLa_3Zr_2O_{12}$ with x = 0.08 to 0.84," Inorg. Chem., 53 [12] 6264-69 (2014). https://doi.org/10.1021/ic500803h
  37. N. C. R.-Navarro, T. Yamashita, A. Miura, M. Higuchi, and K. Tadanaga, "Effect of Sintering Additives on Relative Density and Li-Ion Conductivity of Nb-Doped $Li_7La_3ZrO_{12}$ Solid Electrolyte," J. Am. Ceram. Soc., 100 [1] 276-85 (2017). https://doi.org/10.1111/jace.14572
  38. R. Murugan, V. Thangadurai, and W. Weppner, "Fast Lithium Ion Conduction in Garnet-Type $Li_7La_3Zr_2O_{12}$," Angewandte Chemie., 46 [41] 7778-81 (2007). https://doi.org/10.1002/anie.200701144
  39. J. Awaka, N. Kijima, H. Hayakawa, and J. Akimoto, "Synthesis and Structure Analysis of Tetragonal $Li_7La_3Zr_2O_{12}$ with the Garnet-Related Type Structure," J. Solid State Chem., 182 [8] 2046-52 (2009). https://doi.org/10.1016/j.jssc.2009.05.020
  40. Y. Jin and P. J. McGinn, "Al-Doped $Li_7La_3Zr_2O_{12}$ Synthesized by a Polymerized Complex Method," J. Power Sources, 196 [20] 8683-87 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.065
  41. H. El-Shinawi, G. W. Paterson, D. A. MacLaren, E. J. Cussen, and S. A. Corr, "Low-Temperature Densification of Aldoped $Li_7La_3Zr_2O_{12}$: a Reliable and Controllable Synthesis of Fast-ion Conducting Garnets," J. Mater. Chem. A, 5 [1] 319-29 (2017). https://doi.org/10.1039/C6TA06961D
  42. Y. Jiang, X. Zhu, S. Qin, M. Ling, and J. Zhu, "Investigation of $Mg^{2+}$, $Sc^{3+}$ and $Zn^{2+}$ Doping Effects on Densification and Ionic Conductivity of Low-Temperature Sintered $Li_{7-}La_3Zr_2O_{12}$ Garnets," Solid State Ionics, 300 73-7 (2017). https://doi.org/10.1016/j.ssi.2016.12.005
  43. S. Song, D. Sheptyakov, A. M. Korsunsky, H. M. Duong, and L. Lua, "High Li Ion Conductivity in a Garnet-Type Solid Electrolyte via Unusual Site Occupation of the Doping Ca Ions," Mater. Des., 93 232-37 (2016). https://doi.org/10.1016/j.matdes.2015.12.149
  44. P. G. Bruce and A. R. West, "Ionic Conductivity of LISICON Solid Solutions, $Li_{2+2x}Zn_{1-x}GeO_4$," J. Solid State Chem., 44 [3] 354-65 (1982). https://doi.org/10.1016/0022-4596(82)90383-8
  45. S. Hori, M. Kato, K. Suzuki, M. Hirayama, Y. Kato, and R. Kanno, "Phase Diagram of the $Li_4GeS_{4-}Li-3PS_4$ Quasi- Binary System Containing the Superionic Conductor $Li_{10}GeP_2S_{12}$," J. Am. Ceram. Soc., 98 [10] 3352-60 (2015). https://doi.org/10.1111/jace.13694
  46. P. Zhou, J. Wang, F. Cheng, F. Li, and J. Chen, "A Solid Lithium Superionic Conductor $Li_{11}AlP_2S_{12}$ with a Thio- LISICON Analogous Structure," Chem. Commun., 52 [36] 6091-94 (2016). https://doi.org/10.1039/C6CC02131J
  47. R. Kanno and M. Murayama, "Lithium Ionic Conductor Thio-LISICON: The $Li_2S GeS_2 P_2S_5$ System," J. Electrochem. Soc., 148 [7] A742-46 (2001). https://doi.org/10.1149/1.1379028
  48. Y. Inaguma, L. Chen, M. Itoh, and T. Nakamura, "Candidate Compounds with Perovskite Structure for High Lithium Ionic Conductivity," Solid State Ionics, 70 196-202 (1994).
  49. S. Garcia-Martina, J. M. Rojob, H. Tsukamotoc, E. Mora'na, and M. A. Alario-Francoa, "Lithium-Ion Conductivity in the Novel $La_{1/3−x}Li_{3x}NbO_3$ Solid Solution with Perovskite- Related Structure," Solid State Ionics, 116 [1] 11-8 (1999). https://doi.org/10.1016/S0167-2738(98)00266-5
  50. L. Latie, G. Villeneuve, D. Conte, and G. Le Flem, "Ionic Conductivity of Oxides with General Formula $Li_xLn_{1/3}Nb_{1− x}Ti_xO_3$ (Ln= La, Nd)," J. Solid State Chem., 51 [3] 293-99 (1984). https://doi.org/10.1016/0022-4596(84)90345-1
  51. A. G. Belous, G. N. Novitskaya, S. V. Polyanetskaya, and Y. I. Gornikon, "Investigation into Complex Oxides of $La_{2/3-x}Li_{3x}TiO_3$ Composition," Izv. Akad. Nauk SSSR, Neorg. Mater., 23 [3] 470-72 (1987).
  52. X. Lu "Effect of Microstructure on the Mechanical, Thermal, and Electronic Property Measurement of Ceramic Coatings," Int. J. Miner. Metall. Mater., 21 [11] 1127-31 (2014). https://doi.org/10.1007/s12613-014-1018-2
  53. C. W. Ban and G. M. Choi, "The Effect of Sintering on the Grain Boundary Conductivity of Lithium Lanthanum Titanates," Solid State Ionics, 140 [3] 285-92 (2001). https://doi.org/10.1016/S0167-2738(01)00821-9
  54. M. Itoh, Y. Inaguma, W. H. Jung, L. Chen, and T. Nakamura, "High Lithium Ion Conductivity in the Perovskite- type Compounds $Ln_{1/2}Li_{1/2}TiO_3$ (Ln = La,Pr,Nd, Sm)," Solid State Ionics, 70 203-7 (1994).
  55. G. Schwering, A. Honerscheid, L. Wullen, and M. Jansen, "High Lithium Ionic Conductivity in the Lithium Halide Hydrates $Li_{3-n}(OH_n)Cl$ ($0.83{\leq}n{\leq}2$) and $Li_{3-n}(OH_n)Br$ ($1{\leq}n{\leq}2$) at Ambient Temperatures," Chem. Phys. Chem., 4 [4] 343- 48 (2003). https://doi.org/10.1002/cphc.200390060
  56. M. H. Braga, J. A. Ferreira, V. Stockhausen, J. E. Oliveira, and A. El-Azab, "Novel $Li_3ClO$ based Glasses with Superionic Properties for Lithium Batteries," Mater. Chem. A, 2 [15] 5470-80 (2014). https://doi.org/10.1039/C3TA15087A
  57. Z. Lu, C. Chen, Z. M Baiyee, X, Chen, C. Niu, and F. Ciucci, "Defect Chemistry and Lithium Transport in $Li_3OCl$ Antiperovskite Superionic Conductors," Phys. Chem. Chem. Phys., 17 [48] 32547-55 (2015). https://doi.org/10.1039/C5CP05722A
  58. M. Bilal, S. J. Asadabadi, R. Ahmad, and I. Ahmad, "Electronic Properties of Antiperovskite Materials from State-ofthe- Art Density Functional Theory," J. Chem., 2015 1-11 (2015).
  59. K. S. Lee, S. Y. Shin, and Y. S. Yoon, "$Fe_3O_4$ Nanoparticles on MWCNTs Backbone for Lithium Ion Batteries," J. Korean Ceram. Soc., 53 [3] 376-80 (2016). https://doi.org/10.4191/kcers.2016.53.3.376
  60. M. V. Reddy, G. V. Subba Rao, and B. V. R. Chowdari, "Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries," Chem. Rev., 113 [7] 5364-457 (2013). https://doi.org/10.1021/cr3001884
  61. W. J. Zhang, "A Review of the Electrochemical Performance of Alloy Anodes for Lthium-Ion Batteries," J. Power Sources, 196 [1] 13-24 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.020
  62. H. G. Jung, S. T. Myung, C. S. Yoon, S. B. Son, K. H. Oh, K. Amine, B. Scrosati, and Y. K. Sun, "Microscale Sherical Crbon-Cated $Li_4Ti_5O_{12}$ as Urahigh Power Anode Material for Lithium Batteries," Energy Environ. Sci., 4 1345-51 (2011). https://doi.org/10.1039/c0ee00620c
  63. M. Wakihara, Y. Kadoma, N. Kumagai, H. Mita, R Araki, K. Ozawa, and Y. Ozawa, "Development of Nonflammable Lithium Ion Battery using a New All-Solid Polymer Electrolyte," J. Solid State Electrochem.. 16 [3] 847-55 (2012). https://doi.org/10.1007/s10008-012-1643-5
  64. B. Tian, H. Xiang, L. Zhang, Z. Li, and H. Wang, "Niobium Doped Lithium Titanate as a High Rate Anode Material for Li-ion Batteries," Electrochim. Acta, 55 [19] 5453-58 (2010). https://doi.org/10.1016/j.electacta.2010.04.068
  65. Y. Takeda, M. Nishijima, M. Yamahata, K. Takeda, N. Imanishi and O. Yamamoto, "Lithium Secondary Batteries Using a Lithium Cobalt Nitride, $Li_{2.6}Co_{0.4}N$, as the Anode," Solid State Ionics, 130 61-9 (2000). https://doi.org/10.1016/S0167-2738(99)00293-3
  66. N. S. Choi, J. S. Yin, R. Z. Kim, and S. S. Kim, "Electrochemical Properties of Lithium Vanadium Oxide as an Anode Material for Lithium-ion Battery," Mater. Chem. Phys., 116 [2] 603-6 (2009). https://doi.org/10.1016/j.matchemphys.2009.05.013
  67. J. F. Colin, V. P. V. Caignaert, M. Hervieu, and B. Raveau, "A Novel Layered Titanoniobate $LiTiNbO_5$: Topotactic Synthesis and Electrochemistry Versus Lithium," Inorg. Chem., 45 [18] 7217-23 (2006). https://doi.org/10.1021/ic060801o
  68. Z. X. Lin, H. J. Yu, S. C. Li, and S. B Tian, "Lithium ion Conductors based on $LiTi_2P_3O_{12}$ Compound," Solid State Ionics, 31 [2] 91-4 (1988). https://doi.org/10.1016/0167-2738(88)90291-3
  69. R. E. H. Clark, and D. H. Reiter, Nuclear Fusion Research: Understanding Plasma- Surface Interactions; Vol. 78, pp. 3-26, Springer, Berlin, 2005.
  70. R. Kodama, H. Shiraga, K. Shigemori, Y. Toyama, S. Fujioka, H. Azechi, H. Fujita, H. Habara, T. Hall, Y. Izawa, T. Jitsuni, Y. Kitagawa, K. M. Krushelnick, K. L. Lancaster, K. Mima, K. Nagai, M. Nakai, H. Nishimura, T. Norimatsu, P. A. Norreys, S. Sakabe, K. A. Tanaka, A. Youssef, M. Zepf, and T. Yamanaka, "Nuclear Fusion: Fast Heating Scalable to Laser Sufion Ignition," Nature, 418 [6901] 933-34 (2002). https://doi.org/10.1038/418933a
  71. P. C. Stangeby and G. M. McCracken, "Plasma Boundary Phenomena Ion Tokamaks," Nucl. Fusion, 30 [7] 1225 (1990). https://doi.org/10.1088/0029-5515/30/7/005
  72. B. LaBombard, J. E. Rice, A. E. Hubbard, J. W. Hughes, M. Greenwald, J. Irby, Y. Lin, B. Lipschultz, E. S. Marmar, and C. S. Pitcher, "Transport-Driven Scrape-Off-Layer Flows and the Boundary Conditions Imposed at the Magnetic Separatrix in a Tokamak Plasma," Nucl. Fusion, 44 [10] 1047 (2004). https://doi.org/10.1088/0029-5515/44/10/001
  73. P. N. Yushmanov, T. Takizuka, K. S. Riedel, O. J. W. F. Kardaun, J. G. Cordey, S. M. Kaye, and D. E. Post, "Scalings for Tokamak Energy Confinement," Nucl. Fusion, 30 [10] 1999 (1990). https://doi.org/10.1088/0029-5515/30/10/001
  74. M. N. Rosenbluth and S. V. Putvinski, "Theory for Avalanche of Runaway Electrons in Tokamaks," Nucl. Fusion, 37 [10] 1355 (1997). https://doi.org/10.1088/0029-5515/37/10/I03
  75. N. Taylor and P. Cortes, "Lessons Learnt from ITER Safety & Licensing for DEMO and Future Nuclear Fusion Facilities," Fusion Eng. Des., 89 [9-10] 1995-2000 (2014). https://doi.org/10.1016/j.fusengdes.2013.12.030
  76. F. J. Casson, E. Poli, C. Angioni, R. Buchholz, and A. G. Peeters, "Effect of Turbulence on Electron Cyclotron Current Drive and Heating in ITER," Nucl. Fusion, 55 [1] 012002 (2015). https://doi.org/10.1088/0029-5515/55/1/012002
  77. D. W. Lee, B. G. Hong, Y. H. Kim, W. K. In, and K. H. Yoon, "Preliminary Design of a Helium Cooled Molten Lithium test Blanket Module for the ITER Test in Korea," Fusion Eng. Des., 82 [4] 381-88 (2007). https://doi.org/10.1016/j.fusengdes.2007.03.014
  78. G. S. Lee, J. Kim, S. M. Hwang, C. S. Chang, H. Y. Chang, M. H. Cho, B. H. Choi, K. Kim, K. W. Cho, and S. Cho, "The KSTAR Project: An Advanced Steady State Superconducting Tokamak Experiment," Nucl. Fusion, 40 [3Y] 575 (2000). https://doi.org/10.1088/0029-5515/40/3Y/319
  79. M. Glugla, D. Babineau, L. Bo, S. Maruyama, R. Pearce, G. Piazza, B. Rogers, S. Willms, T. Yamanishi, and S. H. Yun, "Review of the ITER D-T Fuel Cycle Systems and Recent Progress"; pp. 24-9 in 9th International Conference on Tritium Science and Technology. Tritium, Japan, 2010.
  80. H. Kawamura, E. Ishitsuka, K. Tsuchiya, M. Nakamichi, M. Uchida, H. Yamada, K. Nakamura, H. Ito, T. Nakazawa, and H. Takahashi, "Development of Advanced Blanket Materials for a Solid Breeder Blanket of a Fusion Reactor," Nucl. Fusion, 43 [8] 675 (2003). https://doi.org/10.1088/0029-5515/43/8/306
  81. M. Enoeda, Y. Kosaku, T. Hatano, T. Kuroda, N. Miki, T. Honma, M. Akiba, S. Konishi, H. Nakamura, and T. Kawamura, "Design and Technology Development of Solid Breeder Blanket Cooled by Supercritical Water in Japan," Nucl. Fusion, 43 [12] 1837 (2003). https://doi.org/10.1088/0029-5515/43/12/026
  82. M. Nishikawa, T. Kinjyo, T. Ishizaka, S. Beloglazov, T. Takeishi, M. Enodeda, and T. Tanifuji, "Release Behavior of Bred Tritium from $LiAlO_2$," J. Nucl. Mater., 335 [1] 70-6 (2004). https://doi.org/10.1016/j.jnucmat.2004.07.032
  83. A. R. Raffray, M. Akiba, V. Chuyanov, L. Giancarli, and S. Malang, "Breeding Blanket Concepts for Fusion and Materials Requirements," J. Nucl. Mater., 307 21-30 (2002).
  84. J. G. van der Laan, H. Kawamura, N. Roux, and D. Yamaki, "Ceramic Breeder Research and Development: Progress and Focus," J. Nucl. Mater., 283 99-109 (2000).
  85. C. E. Johnson, "Ceramic Breeder Materials," Ceram. Int., 17 [4] 253-58 (1991). https://doi.org/10.1016/0272-8842(91)90019-V
  86. G. W. Hollenberg, "Fast Neutron Irradiation Results on $Li_2O$, $Li_4SiO_4$, $Li_2ZrO_3$ and $LiAlO_2$," J. Nucl. Mater., 123 [1- 3] 896-900 (1984). https://doi.org/10.1016/0022-3115(84)90189-2
  87. J. L. Ethridge and D. E. Baker, "Effects of Fast Neutron Irradiation on Thermal Conductivity of $Li_2O$ and $LiAlO_2$," J. Am. Ceram. Soc., 71 [6] C294-96 (1988).
  88. J. Kin, Z. Wen, X. Xu, N. Li, and S. Song, "Characterization and Improvement of Water Compatibility of ${\gamma}-LiAlO_2$ Ceramic Breeders," Fusion Eng. Des., 85 [7-9] 1162-66 (2010). https://doi.org/10.1016/j.fusengdes.2010.02.027
  89. J. Han, X. Gao, Y. Gong, X. Chen, and C. T. Yang, "Fabrication of a $Li_4SiO_4$-Pbtritium Breeding Material," Fusion Eng. Des., 89 [12] 3046-53 (2014). https://doi.org/10.1016/j.fusengdes.2014.09.008
  90. L. Guo, X. Wang, S. Zhang, C. Zhong, and L. Li, "Effect of Alkalinity on the Hydrothermal Synthesis of $Li_2ZrO_3$ Nano Tube Arrays," J. Mater. Sci., 46 6960-63 (2011). https://doi.org/10.1007/s10853-011-5662-x
  91. Y. H. Park, S. Y. Cho, and M. Y. Ahn, "Fabrication of $Li_{2-}TiO_3$ Pebbles Using PVA-Boric Acid Reaction for Solid Breeding Materials," J. Nucl. Mater., 455 [1-3] 106-10 (2014). https://doi.org/10.1016/j.jnucmat.2014.05.027
  92. K. M. Min, Y. H. Park, and S. Y. Cho, "Synthesis of $Li_2TiO_3$ Powder with High Crystalline Structure for Tritium Breeding Material by Ion-Exchange Process," Fusion Eng. Des., 109 326-29 (2016).
  93. C. E. Johnson, "Tritium Behavior in Lithium Ceramics," J. Nucl. Mater., 270 [1-2] 212-20 (1999). https://doi.org/10.1016/S0022-3115(98)00905-2
  94. P. Gierszewski, M. Dalle Donne, H. Kawamura, and M. Tillack, "Ceramic Pebble Bed Development for Dusion Blankets," Fusion Eng. Des., 27 167-78 (1995). https://doi.org/10.1016/0920-3796(95)90124-8
  95. G. Piazza, J. Reimann, E. Gunther, R. Knitter, N. Roux, and J. D. Lulewicz, "Characterization of Ceramic Breeder Materials for the Helium Cooled Pebble Bed Blanket," J. Nucl. Mater., 307 811-16 (2002).
  96. M. W. Yu, Y. H. Park, and S. J. Lee, "Fabrication of $Li_2TiO_3$ Pebbles by Lithium Solution Penetration Method," J. Korean Ceram. Soc., 50 [5] 333-40 (2013). https://doi.org/10.4191/kcers.2013.50.5.333
  97. G. Dell'Orco, A. Ancona, A. Dimaio, M. Simoncini, and G. Vella, "Thermo-Mechanical Testing of Li-Ceramic for the Helium Cooled Pebble Bed (HCPB) Breeding Blanket," J. Nucl. Mater., 329 1305-8 (2004).
  98. A. Abou-Sena, A. Ying, and M. Abdou, "Effective Thermal Conductivity of Lithium Ceramic Pebble Beds for Fusion Blankets: A Review," Fusion Sci. Technol., 47 [4] 1094-100 (2005). https://doi.org/10.13182/FST05-3
  99. J. Ongena and Y. Ohawa, "Nuclear Fusion: Status Report and Future Prospects," Energ. Policy, 96 770-78 (2016). https://doi.org/10.1016/j.enpol.2016.05.037

Cited by

  1. Poly(imide-co-siloxane) as a Thermo-Stable Binder for a Thin Layer Cathode of Thermal Batteries vol.11, pp.11, 2018, https://doi.org/10.3390/en11113154
  2. Composite Cathode Material Using Spark Plasma Sintering for Bulk-Type Hybrid Solid-State Batteries vol.73, pp.7, 2018, https://doi.org/10.3938/jkps.73.1019
  3. Binder-Free Cathode for Thermal Batteries Fabricated Using FeS 2 Treated Metal Foam vol.7, pp.None, 2017, https://doi.org/10.3389/fchem.2019.00904
  4. Evaluation of the hydrogen solubility and diffusivity in proton-conducting oxides by converting the PSL values of a tritium imaging plate vol.25, pp.None, 2017, https://doi.org/10.1016/j.nme.2020.100875
  5. Challenges and recent progress in LiNixCoyMn1−x−yO2 (NCM) cathodes for lithium ion batteries vol.58, pp.1, 2021, https://doi.org/10.1007/s43207-020-00098-x