References
- M. S. Islam and C. A. J. Fisher, "Lithium and Sodium Battery Cathode Materials: Computatianal Insights into Voltage, Diffusion and Nanostructural Properties," Chem. Soc. Rev., 43 [1] 185-204 (2014). https://doi.org/10.1039/C3CS60199D
-
H. J Kim, U. C. Chung, Y. U. Jeong, J. H. Lee, and J. J. Kim, "Crystal Structures, Electrical Conductivities and Electrochemical Properties of
$LiCo_{1-X}Mg_xO_2$ (x=0.03) for Secondary Lithium Ion Batteries," J. Korean Ceram. Soc., 42 [9] 602-6 (2005). https://doi.org/10.4191/KCERS.2005.42.9.602 -
K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, "
$Li_xCoO_2$ (0https://doi.org/10.1016/0025-5408(80)90012-4 -
S. H. Kim, K. B. Shim, J. P. Ahn, and C. S. Kim, "Structural Stability during Charge-Discharge Cycles in Zr- Doped
$LiCoO_2$ Powders," J. Korean Ceram. Soc., 45 [3] 167- 171 (2008) https://doi.org/10.4191/KCERS.2008.45.3.167 - C. M. Julien, A. Mauger, K. Zaghib, and H. Groult, "Comparative Issues of Cathode Materials for Li-Ion Batteries," Inorganics, 2 [1] 132-54 (2014). https://doi.org/10.3390/inorganics2010132
- M. S. Whittingham, "Lithium Batteries and Cathode Materials," Chem. Rev., 104 [10] 4271-301 (2004). https://doi.org/10.1021/cr020731c
- T. Ohzuku, M. Kitakawa, and T. Hirai, "Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell III. XRay Diffractional Study on the Reduction of Spinel-Related Manganese Dioxide," J. Electrochem. Soc., 137 [3] 769-75 (1990). https://doi.org/10.1149/1.2086552
-
D. H. Jang, Y. J. Shin, and S. M. Oh, "Dissolution of Spinel Oxides and Capacity Losses in 4 V Li/
$LixMn_2O_4$ Cells," J. Electrochem. Soc., 143 [7] 2204-11 (1996). https://doi.org/10.1149/1.1836981 - T. Inoue and M. Sano, "An Investigation of Capacity Fading of Manganese Spinels Stored at Elevated Temperature," J. Electrochem. Soc., 145 [11] 3704-7 (1998). https://doi.org/10.1149/1.1838862
- Y. Xia and M. Yoshio, "An Investigation of Lithium Ion Insertion into Spinel Structure Li-Mn-O Compound," J. Electrochem. Soc., 143 [3] 825-33 (1996). https://doi.org/10.1149/1.1836544
-
Y. Xia, T. Sakai, T. Fujieda, X. Yang, X. Sun, Z. Ma, J. McBreen, and M. Yoshio, "Correlating Capacity Fading and Structural Changes in
$Li_{1+x}Mn_{2-y}O_{4-}$ Spinel Cathode Material: A Systematic Study on the Effects of Li/Mn Ratio and Oxygen Deficiency," J. Electrochem. Soc., 148 [7] 723- 29 (2001). https://doi.org/10.1149/1.1376117 -
M. M. Thackeray, Y. S. Horn, A. J. Kahian, K. D. Kepler, E. Skinner, J. T. Vaughey, and S. A. Hackney, "Structural Fatigue in Spinel Electrodes in High Voltage (4 V) Li/
$Li_xMn_2O_4$ Cells," Electrochem. Soc. Solid-State Lett., 1 [1] 7- 9 (1998). - A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries," J. Electrochem. Soc., 144 [4] 1188-94 (1997). https://doi.org/10.1149/1.1837571
- S. Y. Chung, J. T. Bloking, and Y. M. Chiang, "Electronically Conductive Phospho-olivines as Lithium Storage Electrodes," Nat. Mater., 1 [2] 123-28 (2002). https://doi.org/10.1038/nmat732
-
W. Ojczyk, J. Marzec, K. Swierczek, W. Zajac, M. Molenda, R. Dziembaj, and J. Molenda, "Studies of Selected Synthesis Procedures of the Conducting
$LiFePO_4$ -Based Composite Cathode Materials for Li-Ion Batteries," J. Power Sources, 173 [2] 700-6 (2007). https://doi.org/10.1016/j.jpowsour.2007.05.055 -
H. Liu, J. Xie, and K. Wang, "Synthesis and Characterization of
$LiFePO_4/(C+Fe_2P)$ Composite Cathodes," Solid State Ionics, 179 [27] 1768-71 (2008). https://doi.org/10.1016/j.ssi.2008.01.065 -
Y. Lin, M. X. Gao, D. Zhu, Y. F. Liu, and H. G. Pan, "Effects of Carbon Coating and Iron Phosphides on the Electrochemical Properties of
$LiFePO_4/C$ ," J. Power Sources, 184 [2] 444-48 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.026 -
H. Liu and D. Tang, "The Low Cost Synthesis of Nanoparticles
$LiFePO_4/C$ Composite for Lithium Rechargeable Batteries," Solid State Ionics, 179 [33] 1897-901 (2008). https://doi.org/10.1016/j.ssi.2008.05.005 - B. W. Kang and G. Ceder, "Battery Materials for Ultrafast Charging and Discharging," Nature, 458 [7235] 190-93 (2009). https://doi.org/10.1038/nature07853
-
N. Yabuuchi and T. Ohzuku, "Novel Lithium Insertion Material of
$LiCo_{1/3}Ni_{1/3}Mn_{1/3}O_2$ for Advanced Lithium-ion Batteries," J. Power Sources, 119-121 171-74 (2003). https://doi.org/10.1016/S0378-7753(03)00173-3 -
R. H. Shin, S. I. Son, S. M. Lee, Y. S. Han, Y. D. Kim, and S. S. Ryu, "Effect of
$Li_3BO_3$ Additive on Densification and Ion Conductivity of Garnet-Type$Li_7La_3ZrO_{12}$ Solid Electrolytes of All-Solid-State Lithium-Ion Batteries," J. Korean Ceram. Soc., 53 [1] 712-718 (2016). https://doi.org/10.4191/kcers.2016.53.6.712 - I. Y. Kim, S. H. Jee, and Y. S. Yoon "High-Speed Deposited Amorphous Li-B-W-O Thin Film Electrolytes for All- Solid-State Batteries," Sci. Adv. Mater., 8 [1] 96-102 (2016). https://doi.org/10.1166/sam.2016.2608
- Y. Zhao and L. L. Daemen, "Superionic Conductivity in Lithium-Rich Anti-Perovskites," J. Am. Chem. Soc., 134 [36] 15042-47 (2012). https://doi.org/10.1021/ja305709z
-
A. Emly, E. Kioupakis, and A. V. Ven. "Phase Stability and Transport Mechanisms in Antiperovskite
$Li_3OCl$ and$Li_3OBr$ Superionic Conductors," Chem. Mater., 25 [23] 4663-70 (2013). https://doi.org/10.1021/cm4016222 -
F. Lalere, J. B. Lerichea, M. Courty, S. Boulineau, V. Viallet, C. Masquelier, and V. Seznec, "An All-Solid State NASICON Sodium Battery Operating at
$ 200^{\circ}C$ ," J. Power Sources, 247 975-80 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.051 - J. C. Bachman, S. Muy, A. Grimaud, H. S. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, and Y. S. Horn, "Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction," Chem. Rev., 116 [1] 140-62 (2016). https://doi.org/10.1021/acs.chemrev.5b00563
- I. Kokal, Solid State Electrolytes for All Solid State 3D Lithium ion Batteries, pp. 9-34, in Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, 2012.
- H. B Kang, N. H. Cho, and Y. H. Kim, "Effects of Heat- Treatment Condition on the Characteristics of Sintering and Electrical Behaviors of Two NASICON Compounds," J. Korean Ceram. Soc., 34 [7] 685-92 (1997).
-
H. El-Shinawi, C. Greaves, and J. Janek, "Sol-Gel Synthesis and Room-Temperature Properties of
${\alpha}-LiZr_2(PO_4)_3$ ," RSC Adv., 5 [22] 17054-59 (2015). https://doi.org/10.1039/C4RA16804F -
K. M. Kim, D. O. Shin, and Y. G. Lee, "Effects of Preparation Conditions on the Ionic Conductivity of Hydrothermally Synthesized
$Li_{1+x}Al_xTi_{2-x}(PO_4)_3$ Solid Electrolytes," Electrochim. Acta, 176 1364-73 (2015). https://doi.org/10.1016/j.electacta.2015.07.170 -
K. Arbi, W. Bucheli, R. Jiménez, and J. Sanz, "High Lithium ion Conducting Solid Electrolytes based on NASICON
$Li_{1+x}Al_xM_{2−x}(PO_4)_3$ Materials (M = Ti, Ge and$0{\leq}x{\leq}0.5$ )," J. Eur. Ceram. Soc., 35 [5] 1477-84 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.11.023 -
K. Arbi, S. Mandal, J. M. Rojo, and J. Sanz, "Dependence of Ionic Conductivity on Composition of Fast Ionic Conductors
$Li_{1+x}Ti_{2-x}Al_x(PO_4)_3$ ,$0{\leq}x{\leq}0.7$ . A Parallel NMR and Electric Impedance Study," Chem. Mater., 14 [3] 1091-97 (2002). https://doi.org/10.1021/cm010528i -
D. H. Kothari and D. K. Kanchan, "Effect of Doping of Trivalent Cations
$Ga^{3+}$ ,$Sc^{3+}$ ,$Y^{3+}$ in$Li-{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ (LATP) System on$Li^+$ Ion Conductivity," Phys. B, 501 90-4 (2016). https://doi.org/10.1016/j.physb.2016.08.020 - H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Y. Adachi, "Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate," J. Electrochem. Soc., 137 [4] 1023-27 (1990). https://doi.org/10.1149/1.2086597
- X. L. Wu, J. Zong, H. Xu, W. Wang, and X. J. Liu, "Effects of LAGP Electrolyte on Suppressing Polysulfide Shuttling in Li-S Cells," RSC Adv., 6 [62] 57346-56 (2016). https://doi.org/10.1039/C6RA08048K
-
D. Rettenwander, C. A. Geiger, M. Tribus, P. Tropper, and G. Amthauer, "A Synthesis and Crystal Chemical Study of the Fast Ion Conductor
$Li_{7−3x}Ga_xLa_3Zr_2O_{12}$ with x = 0.08 to 0.84," Inorg. Chem., 53 [12] 6264-69 (2014). https://doi.org/10.1021/ic500803h -
N. C. R.-Navarro, T. Yamashita, A. Miura, M. Higuchi, and K. Tadanaga, "Effect of Sintering Additives on Relative Density and Li-Ion Conductivity of Nb-Doped
$Li_7La_3ZrO_{12}$ Solid Electrolyte," J. Am. Ceram. Soc., 100 [1] 276-85 (2017). https://doi.org/10.1111/jace.14572 -
R. Murugan, V. Thangadurai, and W. Weppner, "Fast Lithium Ion Conduction in Garnet-Type
$Li_7La_3Zr_2O_{12}$ ," Angewandte Chemie., 46 [41] 7778-81 (2007). https://doi.org/10.1002/anie.200701144 -
J. Awaka, N. Kijima, H. Hayakawa, and J. Akimoto, "Synthesis and Structure Analysis of Tetragonal
$Li_7La_3Zr_2O_{12}$ with the Garnet-Related Type Structure," J. Solid State Chem., 182 [8] 2046-52 (2009). https://doi.org/10.1016/j.jssc.2009.05.020 -
Y. Jin and P. J. McGinn, "Al-Doped
$Li_7La_3Zr_2O_{12}$ Synthesized by a Polymerized Complex Method," J. Power Sources, 196 [20] 8683-87 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.065 -
H. El-Shinawi, G. W. Paterson, D. A. MacLaren, E. J. Cussen, and S. A. Corr, "Low-Temperature Densification of Aldoped
$Li_7La_3Zr_2O_{12}$ : a Reliable and Controllable Synthesis of Fast-ion Conducting Garnets," J. Mater. Chem. A, 5 [1] 319-29 (2017). https://doi.org/10.1039/C6TA06961D -
Y. Jiang, X. Zhu, S. Qin, M. Ling, and J. Zhu, "Investigation of
$Mg^{2+}$ ,$Sc^{3+}$ and$Zn^{2+}$ Doping Effects on Densification and Ionic Conductivity of Low-Temperature Sintered$Li_{7-}La_3Zr_2O_{12}$ Garnets," Solid State Ionics, 300 73-7 (2017). https://doi.org/10.1016/j.ssi.2016.12.005 - S. Song, D. Sheptyakov, A. M. Korsunsky, H. M. Duong, and L. Lua, "High Li Ion Conductivity in a Garnet-Type Solid Electrolyte via Unusual Site Occupation of the Doping Ca Ions," Mater. Des., 93 232-37 (2016). https://doi.org/10.1016/j.matdes.2015.12.149
-
P. G. Bruce and A. R. West, "Ionic Conductivity of LISICON Solid Solutions,
$Li_{2+2x}Zn_{1-x}GeO_4$ ," J. Solid State Chem., 44 [3] 354-65 (1982). https://doi.org/10.1016/0022-4596(82)90383-8 -
S. Hori, M. Kato, K. Suzuki, M. Hirayama, Y. Kato, and R. Kanno, "Phase Diagram of the
$Li_4GeS_{4-}Li-3PS_4$ Quasi- Binary System Containing the Superionic Conductor$Li_{10}GeP_2S_{12}$ ," J. Am. Ceram. Soc., 98 [10] 3352-60 (2015). https://doi.org/10.1111/jace.13694 -
P. Zhou, J. Wang, F. Cheng, F. Li, and J. Chen, "A Solid Lithium Superionic Conductor
$Li_{11}AlP_2S_{12}$ with a Thio- LISICON Analogous Structure," Chem. Commun., 52 [36] 6091-94 (2016). https://doi.org/10.1039/C6CC02131J -
R. Kanno and M. Murayama, "Lithium Ionic Conductor Thio-LISICON: The
$Li_2S GeS_2 P_2S_5$ System," J. Electrochem. Soc., 148 [7] A742-46 (2001). https://doi.org/10.1149/1.1379028 - Y. Inaguma, L. Chen, M. Itoh, and T. Nakamura, "Candidate Compounds with Perovskite Structure for High Lithium Ionic Conductivity," Solid State Ionics, 70 196-202 (1994).
-
S. Garcia-Martina, J. M. Rojob, H. Tsukamotoc, E. Mora'na, and M. A. Alario-Francoa, "Lithium-Ion Conductivity in the Novel
$La_{1/3−x}Li_{3x}NbO_3$ Solid Solution with Perovskite- Related Structure," Solid State Ionics, 116 [1] 11-8 (1999). https://doi.org/10.1016/S0167-2738(98)00266-5 -
L. Latie, G. Villeneuve, D. Conte, and G. Le Flem, "Ionic Conductivity of Oxides with General Formula
$Li_xLn_{1/3}Nb_{1− x}Ti_xO_3$ (Ln= La, Nd)," J. Solid State Chem., 51 [3] 293-99 (1984). https://doi.org/10.1016/0022-4596(84)90345-1 -
A. G. Belous, G. N. Novitskaya, S. V. Polyanetskaya, and Y. I. Gornikon, "Investigation into Complex Oxides of
$La_{2/3-x}Li_{3x}TiO_3$ Composition," Izv. Akad. Nauk SSSR, Neorg. Mater., 23 [3] 470-72 (1987). - X. Lu "Effect of Microstructure on the Mechanical, Thermal, and Electronic Property Measurement of Ceramic Coatings," Int. J. Miner. Metall. Mater., 21 [11] 1127-31 (2014). https://doi.org/10.1007/s12613-014-1018-2
- C. W. Ban and G. M. Choi, "The Effect of Sintering on the Grain Boundary Conductivity of Lithium Lanthanum Titanates," Solid State Ionics, 140 [3] 285-92 (2001). https://doi.org/10.1016/S0167-2738(01)00821-9
-
M. Itoh, Y. Inaguma, W. H. Jung, L. Chen, and T. Nakamura, "High Lithium Ion Conductivity in the Perovskite- type Compounds
$Ln_{1/2}Li_{1/2}TiO_3$ (Ln = La,Pr,Nd, Sm)," Solid State Ionics, 70 203-7 (1994). -
G. Schwering, A. Honerscheid, L. Wullen, and M. Jansen, "High Lithium Ionic Conductivity in the Lithium Halide Hydrates
$Li_{3-n}(OH_n)Cl$ ($0.83{\leq}n{\leq}2$ ) and$Li_{3-n}(OH_n)Br$ ($1{\leq}n{\leq}2$ ) at Ambient Temperatures," Chem. Phys. Chem., 4 [4] 343- 48 (2003). https://doi.org/10.1002/cphc.200390060 -
M. H. Braga, J. A. Ferreira, V. Stockhausen, J. E. Oliveira, and A. El-Azab, "Novel
$Li_3ClO$ based Glasses with Superionic Properties for Lithium Batteries," Mater. Chem. A, 2 [15] 5470-80 (2014). https://doi.org/10.1039/C3TA15087A -
Z. Lu, C. Chen, Z. M Baiyee, X, Chen, C. Niu, and F. Ciucci, "Defect Chemistry and Lithium Transport in
$Li_3OCl$ Antiperovskite Superionic Conductors," Phys. Chem. Chem. Phys., 17 [48] 32547-55 (2015). https://doi.org/10.1039/C5CP05722A - M. Bilal, S. J. Asadabadi, R. Ahmad, and I. Ahmad, "Electronic Properties of Antiperovskite Materials from State-ofthe- Art Density Functional Theory," J. Chem., 2015 1-11 (2015).
-
K. S. Lee, S. Y. Shin, and Y. S. Yoon, "
$Fe_3O_4$ Nanoparticles on MWCNTs Backbone for Lithium Ion Batteries," J. Korean Ceram. Soc., 53 [3] 376-80 (2016). https://doi.org/10.4191/kcers.2016.53.3.376 - M. V. Reddy, G. V. Subba Rao, and B. V. R. Chowdari, "Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries," Chem. Rev., 113 [7] 5364-457 (2013). https://doi.org/10.1021/cr3001884
- W. J. Zhang, "A Review of the Electrochemical Performance of Alloy Anodes for Lthium-Ion Batteries," J. Power Sources, 196 [1] 13-24 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.020
-
H. G. Jung, S. T. Myung, C. S. Yoon, S. B. Son, K. H. Oh, K. Amine, B. Scrosati, and Y. K. Sun, "Microscale Sherical Crbon-Cated
$Li_4Ti_5O_{12}$ as Urahigh Power Anode Material for Lithium Batteries," Energy Environ. Sci., 4 1345-51 (2011). https://doi.org/10.1039/c0ee00620c - M. Wakihara, Y. Kadoma, N. Kumagai, H. Mita, R Araki, K. Ozawa, and Y. Ozawa, "Development of Nonflammable Lithium Ion Battery using a New All-Solid Polymer Electrolyte," J. Solid State Electrochem.. 16 [3] 847-55 (2012). https://doi.org/10.1007/s10008-012-1643-5
- B. Tian, H. Xiang, L. Zhang, Z. Li, and H. Wang, "Niobium Doped Lithium Titanate as a High Rate Anode Material for Li-ion Batteries," Electrochim. Acta, 55 [19] 5453-58 (2010). https://doi.org/10.1016/j.electacta.2010.04.068
-
Y. Takeda, M. Nishijima, M. Yamahata, K. Takeda, N. Imanishi and O. Yamamoto, "Lithium Secondary Batteries Using a Lithium Cobalt Nitride,
$Li_{2.6}Co_{0.4}N$ , as the Anode," Solid State Ionics, 130 61-9 (2000). https://doi.org/10.1016/S0167-2738(99)00293-3 - N. S. Choi, J. S. Yin, R. Z. Kim, and S. S. Kim, "Electrochemical Properties of Lithium Vanadium Oxide as an Anode Material for Lithium-ion Battery," Mater. Chem. Phys., 116 [2] 603-6 (2009). https://doi.org/10.1016/j.matchemphys.2009.05.013
-
J. F. Colin, V. P. V. Caignaert, M. Hervieu, and B. Raveau, "A Novel Layered Titanoniobate
$LiTiNbO_5$ : Topotactic Synthesis and Electrochemistry Versus Lithium," Inorg. Chem., 45 [18] 7217-23 (2006). https://doi.org/10.1021/ic060801o -
Z. X. Lin, H. J. Yu, S. C. Li, and S. B Tian, "Lithium ion Conductors based on
$LiTi_2P_3O_{12}$ Compound," Solid State Ionics, 31 [2] 91-4 (1988). https://doi.org/10.1016/0167-2738(88)90291-3 - R. E. H. Clark, and D. H. Reiter, Nuclear Fusion Research: Understanding Plasma- Surface Interactions; Vol. 78, pp. 3-26, Springer, Berlin, 2005.
- R. Kodama, H. Shiraga, K. Shigemori, Y. Toyama, S. Fujioka, H. Azechi, H. Fujita, H. Habara, T. Hall, Y. Izawa, T. Jitsuni, Y. Kitagawa, K. M. Krushelnick, K. L. Lancaster, K. Mima, K. Nagai, M. Nakai, H. Nishimura, T. Norimatsu, P. A. Norreys, S. Sakabe, K. A. Tanaka, A. Youssef, M. Zepf, and T. Yamanaka, "Nuclear Fusion: Fast Heating Scalable to Laser Sufion Ignition," Nature, 418 [6901] 933-34 (2002). https://doi.org/10.1038/418933a
- P. C. Stangeby and G. M. McCracken, "Plasma Boundary Phenomena Ion Tokamaks," Nucl. Fusion, 30 [7] 1225 (1990). https://doi.org/10.1088/0029-5515/30/7/005
- B. LaBombard, J. E. Rice, A. E. Hubbard, J. W. Hughes, M. Greenwald, J. Irby, Y. Lin, B. Lipschultz, E. S. Marmar, and C. S. Pitcher, "Transport-Driven Scrape-Off-Layer Flows and the Boundary Conditions Imposed at the Magnetic Separatrix in a Tokamak Plasma," Nucl. Fusion, 44 [10] 1047 (2004). https://doi.org/10.1088/0029-5515/44/10/001
- P. N. Yushmanov, T. Takizuka, K. S. Riedel, O. J. W. F. Kardaun, J. G. Cordey, S. M. Kaye, and D. E. Post, "Scalings for Tokamak Energy Confinement," Nucl. Fusion, 30 [10] 1999 (1990). https://doi.org/10.1088/0029-5515/30/10/001
- M. N. Rosenbluth and S. V. Putvinski, "Theory for Avalanche of Runaway Electrons in Tokamaks," Nucl. Fusion, 37 [10] 1355 (1997). https://doi.org/10.1088/0029-5515/37/10/I03
- N. Taylor and P. Cortes, "Lessons Learnt from ITER Safety & Licensing for DEMO and Future Nuclear Fusion Facilities," Fusion Eng. Des., 89 [9-10] 1995-2000 (2014). https://doi.org/10.1016/j.fusengdes.2013.12.030
- F. J. Casson, E. Poli, C. Angioni, R. Buchholz, and A. G. Peeters, "Effect of Turbulence on Electron Cyclotron Current Drive and Heating in ITER," Nucl. Fusion, 55 [1] 012002 (2015). https://doi.org/10.1088/0029-5515/55/1/012002
- D. W. Lee, B. G. Hong, Y. H. Kim, W. K. In, and K. H. Yoon, "Preliminary Design of a Helium Cooled Molten Lithium test Blanket Module for the ITER Test in Korea," Fusion Eng. Des., 82 [4] 381-88 (2007). https://doi.org/10.1016/j.fusengdes.2007.03.014
- G. S. Lee, J. Kim, S. M. Hwang, C. S. Chang, H. Y. Chang, M. H. Cho, B. H. Choi, K. Kim, K. W. Cho, and S. Cho, "The KSTAR Project: An Advanced Steady State Superconducting Tokamak Experiment," Nucl. Fusion, 40 [3Y] 575 (2000). https://doi.org/10.1088/0029-5515/40/3Y/319
- M. Glugla, D. Babineau, L. Bo, S. Maruyama, R. Pearce, G. Piazza, B. Rogers, S. Willms, T. Yamanishi, and S. H. Yun, "Review of the ITER D-T Fuel Cycle Systems and Recent Progress"; pp. 24-9 in 9th International Conference on Tritium Science and Technology. Tritium, Japan, 2010.
- H. Kawamura, E. Ishitsuka, K. Tsuchiya, M. Nakamichi, M. Uchida, H. Yamada, K. Nakamura, H. Ito, T. Nakazawa, and H. Takahashi, "Development of Advanced Blanket Materials for a Solid Breeder Blanket of a Fusion Reactor," Nucl. Fusion, 43 [8] 675 (2003). https://doi.org/10.1088/0029-5515/43/8/306
- M. Enoeda, Y. Kosaku, T. Hatano, T. Kuroda, N. Miki, T. Honma, M. Akiba, S. Konishi, H. Nakamura, and T. Kawamura, "Design and Technology Development of Solid Breeder Blanket Cooled by Supercritical Water in Japan," Nucl. Fusion, 43 [12] 1837 (2003). https://doi.org/10.1088/0029-5515/43/12/026
-
M. Nishikawa, T. Kinjyo, T. Ishizaka, S. Beloglazov, T. Takeishi, M. Enodeda, and T. Tanifuji, "Release Behavior of Bred Tritium from
$LiAlO_2$ ," J. Nucl. Mater., 335 [1] 70-6 (2004). https://doi.org/10.1016/j.jnucmat.2004.07.032 - A. R. Raffray, M. Akiba, V. Chuyanov, L. Giancarli, and S. Malang, "Breeding Blanket Concepts for Fusion and Materials Requirements," J. Nucl. Mater., 307 21-30 (2002).
- J. G. van der Laan, H. Kawamura, N. Roux, and D. Yamaki, "Ceramic Breeder Research and Development: Progress and Focus," J. Nucl. Mater., 283 99-109 (2000).
- C. E. Johnson, "Ceramic Breeder Materials," Ceram. Int., 17 [4] 253-58 (1991). https://doi.org/10.1016/0272-8842(91)90019-V
-
G. W. Hollenberg, "Fast Neutron Irradiation Results on
$Li_2O$ ,$Li_4SiO_4$ ,$Li_2ZrO_3$ and$LiAlO_2$ ," J. Nucl. Mater., 123 [1- 3] 896-900 (1984). https://doi.org/10.1016/0022-3115(84)90189-2 -
J. L. Ethridge and D. E. Baker, "Effects of Fast Neutron Irradiation on Thermal Conductivity of
$Li_2O$ and$LiAlO_2$ ," J. Am. Ceram. Soc., 71 [6] C294-96 (1988). -
J. Kin, Z. Wen, X. Xu, N. Li, and S. Song, "Characterization and Improvement of Water Compatibility of
${\gamma}-LiAlO_2$ Ceramic Breeders," Fusion Eng. Des., 85 [7-9] 1162-66 (2010). https://doi.org/10.1016/j.fusengdes.2010.02.027 -
J. Han, X. Gao, Y. Gong, X. Chen, and C. T. Yang, "Fabrication of a
$Li_4SiO_4$ -Pbtritium Breeding Material," Fusion Eng. Des., 89 [12] 3046-53 (2014). https://doi.org/10.1016/j.fusengdes.2014.09.008 -
L. Guo, X. Wang, S. Zhang, C. Zhong, and L. Li, "Effect of Alkalinity on the Hydrothermal Synthesis of
$Li_2ZrO_3$ Nano Tube Arrays," J. Mater. Sci., 46 6960-63 (2011). https://doi.org/10.1007/s10853-011-5662-x -
Y. H. Park, S. Y. Cho, and M. Y. Ahn, "Fabrication of
$Li_{2-}TiO_3$ Pebbles Using PVA-Boric Acid Reaction for Solid Breeding Materials," J. Nucl. Mater., 455 [1-3] 106-10 (2014). https://doi.org/10.1016/j.jnucmat.2014.05.027 -
K. M. Min, Y. H. Park, and S. Y. Cho, "Synthesis of
$Li_2TiO_3$ Powder with High Crystalline Structure for Tritium Breeding Material by Ion-Exchange Process," Fusion Eng. Des., 109 326-29 (2016). - C. E. Johnson, "Tritium Behavior in Lithium Ceramics," J. Nucl. Mater., 270 [1-2] 212-20 (1999). https://doi.org/10.1016/S0022-3115(98)00905-2
- P. Gierszewski, M. Dalle Donne, H. Kawamura, and M. Tillack, "Ceramic Pebble Bed Development for Dusion Blankets," Fusion Eng. Des., 27 167-78 (1995). https://doi.org/10.1016/0920-3796(95)90124-8
- G. Piazza, J. Reimann, E. Gunther, R. Knitter, N. Roux, and J. D. Lulewicz, "Characterization of Ceramic Breeder Materials for the Helium Cooled Pebble Bed Blanket," J. Nucl. Mater., 307 811-16 (2002).
-
M. W. Yu, Y. H. Park, and S. J. Lee, "Fabrication of
$Li_2TiO_3$ Pebbles by Lithium Solution Penetration Method," J. Korean Ceram. Soc., 50 [5] 333-40 (2013). https://doi.org/10.4191/kcers.2013.50.5.333 - G. Dell'Orco, A. Ancona, A. Dimaio, M. Simoncini, and G. Vella, "Thermo-Mechanical Testing of Li-Ceramic for the Helium Cooled Pebble Bed (HCPB) Breeding Blanket," J. Nucl. Mater., 329 1305-8 (2004).
- A. Abou-Sena, A. Ying, and M. Abdou, "Effective Thermal Conductivity of Lithium Ceramic Pebble Beds for Fusion Blankets: A Review," Fusion Sci. Technol., 47 [4] 1094-100 (2005). https://doi.org/10.13182/FST05-3
- J. Ongena and Y. Ohawa, "Nuclear Fusion: Status Report and Future Prospects," Energ. Policy, 96 770-78 (2016). https://doi.org/10.1016/j.enpol.2016.05.037
Cited by
- Poly(imide-co-siloxane) as a Thermo-Stable Binder for a Thin Layer Cathode of Thermal Batteries vol.11, pp.11, 2018, https://doi.org/10.3390/en11113154
- Composite Cathode Material Using Spark Plasma Sintering for Bulk-Type Hybrid Solid-State Batteries vol.73, pp.7, 2018, https://doi.org/10.3938/jkps.73.1019
- Binder-Free Cathode for Thermal Batteries Fabricated Using FeS 2 Treated Metal Foam vol.7, pp.None, 2017, https://doi.org/10.3389/fchem.2019.00904
- Evaluation of the hydrogen solubility and diffusivity in proton-conducting oxides by converting the PSL values of a tritium imaging plate vol.25, pp.None, 2017, https://doi.org/10.1016/j.nme.2020.100875
- Challenges and recent progress in LiNixCoyMn1−x−yO2 (NCM) cathodes for lithium ion batteries vol.58, pp.1, 2021, https://doi.org/10.1007/s43207-020-00098-x