Browse > Article
http://dx.doi.org/10.4191/KCERS.2010.47.2.099

Defect Chemistry of the Mixed Conducting Cage Compound Ca12Al14O33  

Janek, J. (Institute of Physical Chemistry, Justus-Liebig-University)
Lee, D.K. (Institute of Physical Chemistry, Justus-Liebig-University)
Publication Information
Abstract
The electrical transport properties of mayenite ($Ca_{12}Al_{14}O_{33}$ or $12CaO{\cdot}7Al_2O_3$; mostly abbreviated as $C_{12}A_7$) can be controlled in a wide range by varying the oxygen deficiency: At high temperatures mayenite becomes either an oxygen solid electrolyte, a mixed ionic/electronic conductor or an inorganic electride with metal-like properties upon chemical reduction (removing oxygen). The underlying defect chemistry can be understood on the basis of a relatively simple model-despite the complex cage structure: A point defect model based on the assumption that the framework $[Ca_{12}Al_{14}O_{32}]^{2+}$ acts as a pseudo-donor describes well the high temperature transport properties. It accounts for the observed conductivity plateau at higher oxygen activities and also describes the experimentally observed oxygen activity dependence of the electronic conductivity with -1/4 slope at temperatures between 800 and $1000^{\circ}C$. Doping effects in mayenite are still not well explored, and we review briefly the existing data on doping by different elements. Hydration of mayenite plays a crucial role, as Mayenite is hygroscopic, which may be a major obstacle for technical applications.
Keywords
Mayenite; $Ca_{12}Al_{14}O_{33}$; Electronic conductivity; Ionic conductivity; Defect structure; $C_{12}A_7$;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 S.-W. Kim, K. Hayashi, M. Hirano, and H. Hosono, “Electron Carrier Generation in a Refractory Oxide $12CaO.7Al_2O_3$ by Heating in Reducing Atmosphere: Conversion from an Insulator to a Persistent Conductor,” J. Am. Ceram. Soc., 89 3294-98 (2006).   DOI
2 H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, “Structure and Oxygen Mobility in Mayenite ($Ca_{12}Al_{14}O_{33}$): A High-Temperature Neutron Powder Diffraction Study,” Acta Cryst., B63 675-82 (2007).
3 K. Hayashi, S. Matsuishi, M. Hirano, and H. Hosono, “Formation of Oxygen Radicals in $12CaO.7Al_2O_3$: Instability of Extraframework Oxide Ions and Uptake of Oxygen Gas,” J. Phys. Chem. B, 108 8920-25 (2004).   DOI
4 O. Trofymluk, Y. Toda, H. Hosono, and A. Navrotsky, “Energetics of Formation and Oxidation of Microporous Calcium Aluminates: A New Class of Electrides and Ionic Conductors,” Chem. Mater., 17 5574-79 (2005).   DOI
5 P. V. Sushko, A. L. Shluger, K. Hayashi, M. Hirano, and H. Hosono, “Mechanisms of Oxygen Ion Diffusion in a Nanoporous Complex Oxide $12CaO.7Al_2O_3$,” Phys. Rev. B, 73 014101 (2006).   DOI
6 K. Kajihara, S. Matsuishi, K. Hayashi, M. Hirano, and H. Hosono, “Vibrational Dynamics and Oxygen Diffusion in a Nanoporous Oxide Ion Conductor $12CaO.7Al_2O_3$ Studied by ${18}^O$ Labeling and Micro-Raman Spectroscopy,” J. Phys. Chem. C, 111 14855-61 (2007).   DOI
7 S. W. Kim, S. Matsuishi, T. Nomura, Y. Kubota, M. Tanaka, K. Hayashi, T. Kamiya, M. Hirano, and H. Hosono, “Metallic State in a Lime−Alumina Compound with Nanoporous Structure,” Nano Lett., 7 1138-43 (2007).   DOI   ScienceOn
8 K. Hayashi, M. Hirano, and H. Hosono, “Thermodynamics and Kinetics of Hydroxide Ion Formation in $12CaO.7Al_2O_3$,” J. Phys. Chem. B, 109 11900-906 (2005).   DOI
9 R. Strandbakke, C. Kongshaug, R. Haugsrud, and T. Norby, “High-Temperature Hydration and Conductivity of Mayenite, $Ca_{12}Al_{14}O_{33}$,” J. Phys. Chem. C, 113 8938-44 (2009).   DOI
10 K. Hayashi, P. V. Sushko, A. L. Shluger, M. Hirano, and H. Hosono, “Hydride Ion as a Two-Electron Donor in a Nanoporous Crystalline Semiconductor $12CaO.7Al_2O_3$,” J. Phys. Chem. B, 109 23836-42 (2005).   DOI
11 S. Matsuishi, Y. Toda, M. Miyakawa, K. Hayashi, T. Kamiya, M. Hirano, I. Tanaka, and H. Hosono, “High-Density Electron Anions in a Nanoporous Single Crystal: $[Ca_{24}Al_{28}O_{64}]^{4+}(4e-)$,” Science, 301 626-29 (2003).   DOI
12 J. Jeevaratnam, F. P. Glasser, and L. S. D. Glasser, “Anion Substitution and Structure of $12CaO.7Al_2O_3$,” J. Am. Ceram. Soc., 47 105-6 (1964).   DOI
13 H. B. Bartl and T. Scheller, Neues Jahrb. Mineral., Monatsh., 35 547-52 (1970).
14 J. T. S. Irvine and A. R. West, J. Appl. Electrochem., 19 410-12 (1989).   DOI
15 K. Hayashi, S. Matsuishi, T. Kamiya, M. Hirano, and H. Hosono, “Light-Induced Conversion of an Insulating Refractory Oxide into a Persistent Electronic Conductor,” Nature, 419 462-65 (2002).   DOI
16 K. L. Scrivener, “Historical and Present Day Applications of Calcium Aluminate Cements,” pp. 3-23 in Calcium Aluminate Cements 2001, ed. R. J. Mangabhai and F. P. Glasser, IOM communications Ltd., London, 2001.
17 M. Lacerda, J. T. S. Irvine, F. P. Glasser, and A. R. West, “High Oxide Ion Conductivity in $Ca_{12}Al_{14}O_{33}$,” Nature, 332 525-26 (1988).   DOI
18 M. Lacerda, A. R. West, and J. T. S. Irvine, “Electrical Properties of $Ca_{12}Al_{14}O_{33}$: Effect of Hydrogen Reduction,” Solid State Ionics, 59 257-62 (1993).   DOI
19 P. V. Sushko, A. L. Shluger, K. Hayashi. M. Hirano, and H. Hosono, “Electron Localization and a Confined Electron Gas in Nanoporous Inorganic Electrides,” Phys. Rev. Lett., 91 126401 (2003).   DOI
20 K. Hayashi, M. Hirano, S. Matsuishi and H. Hosono, “Microporous Crystal $12CaO.7Al_2O_3$ Encaging Abundant O- Radicals,” J. Am. Chem. Soc., 124 738-39 (2002).   DOI
21 P. V. Sushko, A. L. Shluger, K. Hayashi, M. Hirano, and H. Hosono, “Role of Hydrogen Atoms in the Photoinduced Formation of Stable Electron Centers in H-doped $12CaO.7Al_2O_3$,” Phys. Rev. B, 73 045120 (2006).   DOI
22 P. V. Sushko, A. L. Shluger, M. Hirano, and H. Hosono, “From Insulator to Electride: A Theoretical Model of Nanoporous Oxide $12CaO.7Al_2O_3$,” J. Am. Chem. Soc., 129 942-51 (2007).   DOI
23 D.-K. Lee, L. Kogel, S. G. Ebbinghaus, I. Valov, H.-D. Wiemhoefer, M. Lerch, and J. Janek, “Defect Chemistry of the Cage Compound, $Ca_{12}Al_{14}O_{33-\delta}$ - Understanding the Route from a Solid Electrolyte to a Semiconductor and Electride,” Phys. Chem. Chem. Phys., 11, 3105-14 (2009).   DOI
24 Z. Li, J. Yang, J. G. Hou, and Q. Zhu, “Is Mayenite without Clathrated Oxygen an Inorganic Electride?,” Angew, Chem. Int. Ed., 43 6479-82 (2004).   DOI
25 S. Matsuishi, S. W. Kim, T. Kamiya, M. Hirano, and H. Hosono, “Localized and Delocalized Electrons in Room-Temperature Stable Electride $[Ca_{24}Al_{28}O_{64}]^{4+}(O2-)_{2-x}(e-)_{2x}$: Analysis of Optical Reflectance Spectra,” J. Phys. Chem. C, 112 4753-60 (2008)   DOI
26 J. E. Medvedeva, A. J. Freeman, M. I. Bertoni, and T. O. Mason, “Electronic Structure and Light-Induced Conductivity of a Transparent Refractory Oxide,” Phys. Rev. Lett., 93 016408 (2004).   DOI
27 J. E. Medvedeva and A. J. Freeman, “Hopping versus Bulk Conductivity in Transparent Oxides: $12CaO.7Al_2O_3$,” Appl. Phys. Lett., 85 955-57 (2004).
28 L. Palacios, A. Cabeza, S. Bruque, S. Garcia-Granda, and M. A. G. Aranda, “Structure and Electrons in Mayenite Electrides,” Inorg. Chem., 47 2661-67 (2008).   DOI   ScienceOn
29 H. Hosono and Y. Abe, “Occurrence of Superoxide Radical Ion in Crystalline Calcium Aluminate $12CaO.7Al_2O_3$ Prepared via Solid-State Reactions,” Inorg, Chem., 26 1192-95 (1987).   DOI
30 J. A. Imlach, L. S. D. Glasser, and P. F. Glasser, “Excess Oxygen and the Stability of $12CaO.7Al_2O_3$,” Cement Conc. Res., 1 57-61 (1971).   DOI
31 M. Mogensen, T. Lindegaard, U. R. Hansen, and G.. Mogensen, “Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped $CeO_2$,” J. Electrochem. Soc., 141 2122-28 (1994).   DOI
32 S. W. Kim, R. Tarumi, H. Iwasaki, H. Ohta, M. Hirano, and H. Hosono, “Thermal Conductivity and Seebeck Coefficient of $12CaO.7Al_2O_3$ Electride with a Cage Structure,” Phys. Rev. B, 80 075201 (2009).   DOI
33 J. T. S. Irvine, M. Lacerda, and A. R. West, “Oxide Ion Conductivity in $Ca_{12}Al_{14}O_{33}$,” Mat. Res. Bull., 23 1033-38 (1988).   DOI
34 J.-H. Park and R. N. Blumenthal, “Electronic Transport in 8 Mole Percent $Y_2O_3-ZrO_2$,” J. Electrochem. Soc., 136 2867-76 (1989).   DOI