• Title/Summary/Keyword: Solid state laser

Search Result 152, Processing Time 0.037 seconds

Simultaneous Generation of Orthogonally Polarized Signals in an Optical Parametric Oscillator Based on Periodically Poled Lithium Niobate

  • Kumar, CH. S.S. Pavan;Kim, Byoung Joo;Kim, Deok Woo;Cha, Myoungsik
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.63-68
    • /
    • 2020
  • We built an optical parametric oscillator (OPO) generating orthogonally polarized signals at different wavelengths simultaneously, based on a periodically poled lithium niobate (PPLN) crystal. The OPO was pumped by ns-pulses at 1.064 ㎛ from a diode-pumped solid-state laser, where we found the type-0 and the type-1 quasi-phase matching conditions were satisfied simultaneously in the PPLN crystal. This enabled us to create a coherent light source which can emit dual signals which could be accessed easily by rotating a polarizer.

세계 레이저시장 동향 및 전망

  • Korea Optical Industry Association
    • The Optical Journal
    • /
    • s.100
    • /
    • pp.26-29
    • /
    • 2005
  • 레이저 가공기 세계시장은 2010년에 약 70억 달러 이상의 규모가 예상되고 고출력 CW 고체 레이저 시장은 2010년까지 매년 약 30%의 성장이, 펄스레이저 시스템 및 레이저마킹기 시장는 연간 10% 이상의 성장을 예상하고 있다. 반면, 세계 레이저 발진기의 시장에서 CO2 레이저의 경우 시장의 규모가 작아져서 2004년에 약 4억 달러의 규모가 2010년에는 약 2.3억 달러 수준으로 하향할 것으로 예상되고 있다. 고체 레이저에서 특기할 사항은 2010년에 Lamp Pumped CW Nd;YAG 레이저의 경우 약 74백만 달러로 규모가 축소됨에 비해 고출력 DPSSL(Diode Pumped Solid State laser) 시장규모는 약 17억 달러로 급성장하며 레이저 마킹 및 미세 정밀 가공용 저출력 DPSSL의 시장 규모가 약 13억 달러로 고속 성장할 것으로 예측이 된다.

  • PDF

Diffusion Coefficient of Iron in ZnSe Polycrystals from Metal Phase for mid-IR Gain Medium Application

  • Jeong, Junwoo;Myoung, NoSoung
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.371-375
    • /
    • 2014
  • Diffusion coefficient of Fe in polycrystalline host ZnSe as a mid-IR gain medium has been measured in the annealing temperature ranges of 850 to $950^{\circ}C$. The synthesis of the samples was carried out in quartz ampoule in which the Fe thin film deposited by physical vapor evaporation method on the ZnSe. One can realize that the diffusion coefficient strongly depends on the surface active surfactants through the cleaning process and the substrate temperature during the thin film deposition leading to $2.04{\times}10^{-9}cm^2/s$ for $Fe^{2+}:ZnSe$. The Annealing temperature dependence of the Fe ions diffusion in ZnSe was used to evaluate the activation energy, $E_a$=1.39 eV for diffusion and the pre-exponential factor $D_0$ of $13.5cm^2/s$.

Cold spray technology as a potential additive manufacturing (3D 프린팅 공정 관점의 저온분사 기술)

  • Kim, Hyeong-Jun;Yun, Sang-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.90-90
    • /
    • 2017
  • Cold spray (Cold gas dynamic spray, kinetic spray) is the latest spray coating process that is known as solid state deposition process. In cold spray, inert gases (typically nitrogen and helium) accelerate powder particles prior to impact onto the substrate. Accelerating particles start to deposit onto the substrate after reaching certain critical velocities depending on the coating materials and substrate. Since process gas temperatures are kept below to melting temperature of the coating materials, it is possible to spray temperature sensitive materials such as copper and titanium, nanocrystal materials, and amorphous metals without affecting the phase change and oxide formation. It is also possible to deposit thick coatings because cold spray coatings present compressive residual stresses. This ability to deposit thick coatings is suitable to repair or rebuild parts as an additive manufacturing process. In this presentation, cold spray is introduced and compared to other additive manufacturing processes such as laser and electron beam based processes. It is also presented some applications especially in the view point of additive manufacturing process.

  • PDF

A Brief Overview of Atom Probe Tomography Research

  • Gault, Baptiste
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.117-126
    • /
    • 2016
  • Atom probe tomography (APT) has been fast rising in prominence over the past decade as a key tool for nanoscale analytical characterization of a range of materials systems. APT provides three-dimensional mapping of the atom distribution in a small volume of solid material. The technique has evolved, with the incorporation of laser pulsing capabilities, and, combined with progress in specimen preparation, APT is now able to analyse a very range of materials, beyond metals and alloys that used to be its core applications. The present article aims to provide an overview of the technique, providing a brief historical perspective, discussing recent progress leading to the state-of-the-art, some perspectives on its evolution, with targeted examples of applications.

Polycrystalline Silicon Thin Film Transistor Fabrication Technology (다결정 실리콘 박막 트랜지스터 제조공정 기술)

  • 이현우;전하응;우상호;김종철;박현섭;오계환
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.212-222
    • /
    • 1992
  • To use polycrystalline Si Thin Film Transistor (poly-Si TFT) in high density SRAM instead of High Load Resistor (HLR), TFT is needed to show good electrical characteristics such as large carrier mobility, low leakage current, high driver current and low subthreshold swing. To satisfy these electrical characteristics, the trap state density must be reduced in the channel poly. Technological issues pertinent to the channel poly fabrication process are investigated and discussed. They are solid phase growth (SPG), Si-ion implantation, laser annealing and hydrogenation. The electrical properties of several CVD oxides used as the gate oxide of TFT are compared. The dependence of the electrical characteristics of TFT on source-drain ion-implantation dose, drain offset length and dopant lateral diffusion are also described.

  • PDF

A study of the output waveform of solid-state laser of multi-discharge method by various switching control (다수 스위칭 제어를 통한 Multi-Discharge방식의 고체레이저 출력파형 연구)

  • Kwak, S.Y.;Kim, S.G.;Hong, J.H.;Noh, K.K.;Kang, U.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1852-1854
    • /
    • 2003
  • In manufacturing processes, various and suitable pulse shapes are required for the purpose of material processing. In order to make various pulse shapes with variable pulse length and high duty cycle, We have fabricated the power supply consisting 6 SCRs and the Pulse Forming Network(PFN) with the precise delay time control. So our control system has three switching circuits, 3 mesh PFN, and simmer circuit. In addition, we have designed and fabricated the PIC one-chip microprocessor(16F877) to control the delay time of sequential switching.

  • PDF

Joule-heating Induced Crystallization (JIC) of Amorphous Silicon Films

  • Ko, Da-Yeong;Ro, Jae-Sang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.101-104
    • /
    • 2018
  • An electric field was applied to a Mo conductive layer in the sandwiched structure of $glass/SiO_2/Mo/SiO_2/a-Si$ to induce Joule heating in order to generate the intense heat needed to carry out the crystallization of amorphous silicon. Polycrystalline silicon was produced via Joule heating through a solid state transformation. Blanket crystallization was accomplished within the range of millisecond, thus demonstrating the possibility of a new crystallization route for amorphous silicon films. The grain size of JIC poly-Si can be varied from few tens of nanometers to the one having the larger grain size exceeding that of excimer laser crystallized (ELC) poly-Si according to transmission electron microscopy. We report here the blanket crystallization of amorphous silicon films using the $2^{nd}$ generation glass substrate.

Holographic Data Grating Formation of As40Ge10Se15S35 Single Layer, Ag/As40Ge10Se15S35 Double Layer and As40Ge10Se15S35/Ag/As40/Ge10Se15S35 Multi-layer Thin Films with the DPSS Laser (DPSS Laser에 의한 As40Ge10Se15S35, Ag/As40Ge10Se15S35와 As40Ge10Se15S35/Ag/As40/Ge10Se15S35박막의 홀로그래픽 데이터 격자형성)

  • Ju, Long-Yun;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.240-244
    • /
    • 2007
  • We investigated the diffraction grating efficiency by the Diode Pumped Solid State(DPSS 532 nm) laser beam wavelength to improve the diffraction efficiency on $As_{40}Ge_{10}Se_{15}S_{35},\;Ag/As_{40}Ge_{10}Se_{15}S_{35}$ and $As_{40}Ge_{10}Se_{15}S_{35}/Ag/As_{40}Ge_{10}Se_{15}S_{35}$ thin film. Diffraction efficiency was obtained from DPSS laser, used (P:P)polarized laser beam on each thin films. As a result, for the laser beam intensity in $0.24mW/cm^2$, single $As_{40}Ge_{10}Se_{15}S_{35}$ thin film shows the highest value of 0.161% diffraction efficiency at 300 s and for laser beam intensity in $2.4mW/cm^2$, it was recorded with the fastest speed of 50 s(0.013%), which the diffraction grating forming speed is faster than that of $0.24mW/cm^2$ beam. $Ag/As_{40}Ge_{10}Se_{15}S_{35}$ double layer and $As_{40}Ge_{10}Se_{15}S_{35}/Ag/As_{40}Ge_{10}Se_{15}S_{35}$ multi-layered thin film also show the faster grating forming speed at $2.4mW/cm^2$ and higher value of diffraction efficiency at $0.24mW/cm^2$.

Optimization of $Nd^{3+}$ ion co-doping in $CaAl_2O_4:\;Eu^{2+}$ blue phosphor ($CaAl_2O_4:Eu^{2+}$ 청색(靑色) 형광체(螢光體)의 $Nd^{3+}$ 도핑 최적화(最適化)에 관한 연구(硏究))

  • Bartwal, Kunwar Singh;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.46-50
    • /
    • 2007
  • Blue phosphor calcium aluminate, $CaAl_2O_4:Eu^{2+}$ co-doped with $Nd^{3+}$ was prepared by solid state synthesis method. Phosphor materials with 1 mol% $Eu^{2+}$ and varying compositions of $Nd^{3+}$ show high brightness and long persistent luminescence. The synthesized phosphor materials were investigated by powder x-ray diffraction (XRD), SEM, TEM, photoluminescence excitation and emission studies. Broad band UV excited luminescence of the $CaAl_2O_4:Eu^{2+}:Nd^{3+}$ was observed in the blue region (${\lambda}_{max}=440\;nm$) due to transitions from the $4f^65d^1$ to the $4f^7$ configuration of the $Eu^{2+}$ ion. $Nd^{3+}$ ion doping in the phosphor results in long afterglow phosphorescence when the excitation light is cut off.