• Title/Summary/Keyword: Solid propellants

Search Result 147, Processing Time 0.018 seconds

Slow Cook-Off Test and Evaluation for HTPE Insensitive Propellants (HTPE 둔감추진제 완속가열 시험평가)

  • Yoo, Ji-Chang;Lee, Do-Hyung;Kim, Chang-Kee;Jung, Jung-Young;Kim, Jun-Hyung;Seo, Tae-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.155-158
    • /
    • 2009
  • This study was investigated to know the thermal decomposition and measure the reaction time and temperature by EIDS cook-off test for the propellant ingredients and 2 kinds of HTPE propellants. The thermal analysis of the propellant ingredients used in this study showed that the thermal stability of these materials decreases in the following order : AP > HTPE > AN > BuNENA. In addition, propellant HTPE 002 containing AN showed that an endothermic process at around $125^{\circ}C$ corresponding to the solid`solid phase change($II{\rightarrow}I$) of AN was followed by the exothermic process due to decomposition of BuNENA/AN until $200^{\circ}C$. HTPE 001 and HTPE 001 reacted at around $250^{\circ}C$ and $152^{\circ}C$ each other, and the temperature of them sharply increased at $115^{\circ}C$ from EIDS slow cook-off tests.

  • PDF

Ignition of Solid Propellants at Subatmospheric Pressures (대기압 이하에서 고체 추진제의 점화 특성 향상 연구)

  • Kim, In-Cul;Ryoo, Baek-Neung;Jung, Jung-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.67-72
    • /
    • 2006
  • Several propellants were investigated experimentally for ignition characteristics in subatmospheric pressure. The threshold ignition pressure was 4 psia for HTPB/AP composite propellant. The partial replacement of AP in HTPB/AP propellant by $5{\sim}l5%$ of HMX, HNIW showed that the improvements in ignition delay was over 50% and the threshold pressure was below 0.4 psia. This appears to be due to the characteristics of HMX and HNIW exothermic dissociated at the temperature(${\sim}220^{\circ}C$) love. than that of AP. The ignition substance $B/KNO_3$ was coated thinly on the propellant surface for better ignition performance. As a result, ignition delay time of 15% was improved. NC is applied to $B/KNO_3$ ignition substance as a secondary binder and $NC-B/KNO_3$ suspension solution is coated to the propellant surface.

Performance Study of Nozzleless Booster Casted to the High Density Solid Propellant with Zr as a Metal Fuel (고밀도 지르코늄(Zr) 금속연료 조성의 추진제를 이용한 무노즐 부스터 성능 연구)

  • Khil, Taeock;Jung, Eunhee;Lee, Kiyeon;Ryu, Taeha
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.38-51
    • /
    • 2018
  • This study was carried out to improve the performance characteristics of nozzleless boosters that are used in ramjet boosters. A propellant using Zr as the metal fuel was developed, which provided a higher density than the propellant using Al as the metal fuel. The developed propellant was cast using the nozzleless booster and a ground test was carried out by varying the length-to-diameter ratio (L/D ratio) of the propellant. From a comparison between the performance characteristics of propellants using Zr and Al, it was proved that the performance of the propellant using Zr is higher than that of propellant using Al, except for the specific impulse, under all tested conditions. As the length-to-diameter ratio was increased, the specific impulse of the propellant using Zr was decreased by 88% compared with that of the propellant with Al. However, because of the density difference between the propellants, the impulse density of the propellant with Zr was higher than that of the propellant with Al under all tested conditions.

A Study on the Properties of Solid Propellants with Respect to the Crystal Phase of HNIW (HNIW 결정상에 따른 고체추진제 특성 연구)

  • Jang, Myungwook;Kim, Taekyu;Jung, Hoon;Lee, Dug Bum
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.44-50
    • /
    • 2019
  • HNIW is a high energy material and has four crystalline phases, it is known that the thermal properties of the material depend on the crystal phase. In this sturdy, the viscosity, mechanical and burning properties of a solid propellant with nitrate ester polyester(NEPE) system with respect to the crystal phases of HNIW. According to the crystal phase of HNIW, the mechanical properties of the cured propellant did not change considerably, however differences were observed in the burning properties. Considering both a high density and stable burning properties, the optimum crystal phase of HNIW can be identified as the main factor influencing to the NEPE system propellant.

Burning Rate Estimate Method of Solid Propellants at High Pressure Condition (고압에서 작동하는 고체 추진제 연소속도 추정 방법)

  • Choi, Hanyoung;Lee, Dongsun;Sung, Hong-Gye;Lee, Wonmin;Kim, Eunmi
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • The burning rate estimation method of solid propellants, based on closed bomb tests, has been introduced. The composition of the combustion gas is determined by using CEA and the Noble-Abel equation of state for high pressure operation conditions. Covolume taking into account the collision among molecules due to the actual volume of the molecule is modeled by LJ potential. A cubic form function is applied to calculate the volume change of propellant grains during combustion. The estimated burning rates of five different grain configuation at high pressure are fairly compared with BRLCB results within the maximum error of 6%.

The current status of the development of pryostarters (파이로스타터 개발 현황)

  • Hong, Moon-Geun;Lee, Soo-Yong
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.204-209
    • /
    • 2010
  • The current status of the development of pyrostarters, which play a role as a turbo pump starter in liquid propellant propulsion systems by supplying pressurized gas to power turbines for engine start, has been introduced. Firstly, the development history is briefly summarized, and secondly the current technical status in core parts for the development of pryrostarters such as solid propellants, internal ballistics, rupture discs, and igniters are presented. The current technical achievements could make it feasible to fulfill the development requirements for pyrostarters.

Development of Thruster for Divert Control System (궤도 수정용 추력발생장치 개발)

  • Jeon, Young-Jin;Baek, Ki-Bong;Lim, Seol;Suh, Suhk-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.364-367
    • /
    • 2011
  • The development of the DCS thrust unit during the attitude control thruster of the launch vehicle and guided missile is introduced. The DCS thrust unit using solid propellants based on a two-axis control is designed and through the thermo-structural and flow analysis is designed in detail. The performance of the thrust unit based on the detail design is demonstrated through a combustion test.

  • PDF

A Study on New Curing System Available for Solid Propellant (고체 추진제의 새로운 경화시스템에 관한 연구)

  • Min, Byoung-Sun;Park, Young-Chul;Yoo, Ji-Chang;Kim, Chang-Kee;Ryu, Baek-Neung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.420-421
    • /
    • 2011
  • In this study, Instead of using urethane curative systems, which have long been used as solid propellants, a triazole curative system has been introduced into a new binder recipe in which azide groups in the polymer react with triple bonds of a dipolarophile curative.

  • PDF

Measuring Nano-Width of Wave Fronts in Combustion: a Numerical Approach (연소시 발생하는 파면의 나노 사이즈 두께 측정: 수치적 접근)

  • Yoh, Jai-Ick
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.20-27
    • /
    • 2005
  • I consider the structure of steady wave system which is admitted by the continuum equations for materials that undergo phase transformations with exothermic chemical reaction. In particular, the dynamic phase front structures between liquid and gas phases, and solid and liquid phases are computationally investigated. Based on the one-dimensional continuum shock structure analysis, the present approach can estimate the nano-width of waves that are present in combustion. For illustration purpose, n-heptane is used in the evaporation and condensation analysis and HMX is used in the melting and freezing analysis of energetic materials of interest. On-going effort includes extension of this idea to include broad range of liquid and solid fuels, such as rocket propellants.

  • PDF

Analysis of the Burning Rate of Solid Propellant Accounting for the Evaporation on the Surface (표면 증발을 고려한 고체추진제의 연소율 해석)

  • 이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.41-47
    • /
    • 1999
  • The burning rate of solid propellant is one of the key parameter associated with the dynamic characteristics of combustion and the combustion performances. In the AP propellants, the evaporation on the reacting surface as well as the decomposition of the propellant is of great importance in determining the overall burning rate. In this study, a theoretical analysis was conducted to obtain the expression for burning rate in the steady state combustion with the energy and species equations in the condensed phase when the radiative heat flux partially contributes to the total heat transfer to the propellant surface.

  • PDF