DOI QR코드

DOI QR Code

Burning Rate Estimate Method of Solid Propellants at High Pressure Condition

고압에서 작동하는 고체 추진제 연소속도 추정 방법

  • Choi, Hanyoung (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Lee, Dongsun (Resarch Institute of Aerospace Engineering and Technology, Korea Aerospace University) ;
  • Sung, Hong-Gye (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Lee, Wonmin (Research and Development Section, Hanwha Corporation Yeosu Plant) ;
  • Kim, Eunmi (Research and Development Section, Hanwha Corporation Yeosu Plant)
  • Received : 2021.11.04
  • Accepted : 2022.01.25
  • Published : 2022.02.28

Abstract

The burning rate estimation method of solid propellants, based on closed bomb tests, has been introduced. The composition of the combustion gas is determined by using CEA and the Noble-Abel equation of state for high pressure operation conditions. Covolume taking into account the collision among molecules due to the actual volume of the molecule is modeled by LJ potential. A cubic form function is applied to calculate the volume change of propellant grains during combustion. The estimated burning rates of five different grain configuation at high pressure are fairly compared with BRLCB results within the maximum error of 6%.

밀폐용기(Closed Bomb)시험을 통해 고압에서 작동하는 고체 추진제의 연소속도를 추정하는 방법을 연구하였다. CEA를 이용하여 연소가스의 조성을 계산였으며 밀폐용기 내부의 고온, 고압의 환경을 묘사하기 위해 Noble-Abel 상태방정식을 적용하였다. 분자의 부피를 고려한 분자 간의 충돌을 묘사하는 인자인 Covolume을 분자의 LJ potential을 이용하여 모델링하였다. 또한 추진제의 부피 변화율을 고려하기 위해 3차 형상함수(Cubic form function)를 적용하였다. 각 모델을 사용하여 고압용기에서 측정된 5개의 압력-시간 선도로부터 연소속도를 계산하고 이를 BRLCB 결과와 비교 검증하였다. 각 실험에서 약 6% 이내의 최대 오차를 갖는 연소속도를 추정함으로써 초고압 환경에서의 연소속도 추정 방법을 정립하였다.

Keywords

Acknowledgement

본 연구는 방위산업기술지원센터의 지원(사업명: 화포 추진제 및 추진성능 예측 SW기술, 과제번호: UC190003D)하에 수행되었습니다.

References

  1. Cho, M.G., Heo, J.Y. and Sung, H.G., "Unsteady Internal Ballistic Analysis for Solid Rocket Motors with Erosive Burning," Journal of the Korean Society of Propulsion Engineers, Vol. 13, No. 2, pp. 17-25, 2009.
  2. Gupta, G., Jawale, L., Mehilal, D. and Bhattacharya, B., "Various Methods for the Determination of the Burning Rates of Solid Propellants - An Overview," Central European Journal of Energetic Materials, Vol. 12, No. 3, pp. 593-620, 2015.
  3. Crawford, B.L., Huggett, C., Daniels, F. and Wilfong, R.E., "Direct Determination of Burning Rates of Propellant Powders," Analytical Chemistry, Vol. 19, No. 9, pp. 630-633, 1947. https://doi.org/10.1021/ac60009a004
  4. Song, S.J., Kim, H.J., Ko, S.F., Oh, H.T., Kim, I.C., Yoo, J.C. and Jung, J.Y., "Measurement of Solid Propellant Burning Rates by Analysis of Ultrasonic Full Waveforms," Journal of Mechanical Science and Technology, Vol. 23, No. 4, pp. 1112-1117, 2009. https://doi.org/10.1007/s12206-009-0302-y
  5. Eisenreich, N., Kugler, H.P. and Sinn. F., "An Optical System for Measuring the Burning Rate of Solid Propellant Strands," Propellants, Explosives, Pyrotechnics, Vol. 12, No. 3, pp. 78-80, 1987. https://doi.org/10.1002/prep.19870120304
  6. Sung, H.-G. and Yoo, J.C., "Burning Rate Characteristics of Solid Propellant at Extremely High Pressure," Journal of the Korean Society of Propulsion Engineers, Vol. 10, No. 3, pp. 60-66, 2006.
  7. Celmins, A., "Solid Propellant Burning Rate Measurement in a Closed Bomb," ARMY BALLISTIC RESEARCH LAB, Aberdeen Proving Ground, M.D., U.S.A., BRL-R-1840, 1975.
  8. Kubota, N., Propellants and Explosives: Thermochemical Aspects of Combustion, 3rd ed., John Wiley & Sons Inc., New York, N.Y., U.S.A., 2015.
  9. Hirschfelder, J.O., Curtiss, C.F. and Bird, R.B., Molecular Theory of Gases and Liquids, John Wiley & Sons Inc., New York, N.Y., U.S.A., 1964.
  10. Vittal, D. and Singh, S., "Form Function for Propellants in Closed Vessel Work," Propellants, Explosives, Pyrotechnics, Vol. 5, No. 1, pp. 9-14, 1980. https://doi.org/10.1002/prep.19800050103
  11. NATO., "Derivation of Thermochemical Values for Interior Ballistic Calculation," STANAG 4400, 1993.
  12. Gordon, S. and McBride, B.J., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications: I. Analysis," NASA, Cleveland, O.H., U.S.A., NASA RP-1311, 1994.
  13. Freedman, E., "BLAKE - A Thermodynamics Code Based on TIGER: User's Guide and Manual," ARMY BALLISTIC RESEARCH LAB, Aberdeen Proving Ground, M.D., U.S.A., ARBRL-TR-02411, 1982.
  14. Oberle, W.F. and Kooker, D.E., "BRLCB: A Closed-Chamber Data Analysis Program Part 1. Theroy and User's Manual," ARMY RESEARCH LAB, Aberdeen Proving Ground, M.D., U.S.A., ARL-TR-36, 1993.