• Title/Summary/Keyword: Solid oxide cells

Search Result 329, Processing Time 0.04 seconds

Powder Packing Behavior and Constrained Sintering in Powder Processing of Solid Oxide Fuel Cells (SOFCs)

  • Lee, Hae-Weon;Ji, Ho-Il;Lee, Jong-Ho;Kim, Byung-Kook;Yoon, Kyung Joong;Son, Ji-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.130-145
    • /
    • 2019
  • Widespread commercialization of solid oxide fuel cells (SOFCs) is expected to be realized in various application fields with the advent of cost-effective fabrication of cells and stacks in high volumes. Cost-reduction efforts have focused on production yield, power density, operation temperature, and continuous manufacturing. In this article, we examine several issues associated with processing for SOFCs from the standpoint of the bimodal packing model, considering the external constraints imposed by rigid substrates. Optimum compositions of composite cathode materials with high volume fractions of the second phase (particles dispersed in matrix) have been analyzed using the bimodal packing model. Constrained sintering of thin electrolyte layers is also discussed in terms of bimodal packing, with emphasis on the clustering of dispersed particles during anisotropic shrinkage. Finally, the structural transition of dispersed particle clusters during constrained sintering has been correlated with the structural stability of thin-film electrolyte layers deposited on porous solid substrates.

The Crack Behavior in the Planar Solid Oxide Fuel Cell under the Fabricating and Operating Temperature (제조 및 작동온도에서 평판형 고체연료전지에 발생한 균열 거동)

  • Park, Cheol Jun;Kwon, Oh Heon;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.34-41
    • /
    • 2014
  • The goal of this study is to investigate some crack behaviors which affect the crack propagation angle at the planar solid oxide fuel cell with cracks under the fabricating and operating temperature and analyze the stresses by 3 steps processing on the solid oxide fuel cell. Currently, there are lots of researches of the performance improvement for fuel cells, and also for the more powerful efficiency. However, the planar solid oxide fuel cell has demerits which the electrode materials have much brittle properties and the thermal condition during the operating process. It brings some problems which have lower reliability owing to the deformation and cracks from the thermal expansion differences between the electrolyte, cathode and anode electrodes. Especially the crack in the corner of the electrodes gives rise to the fracture and deterioration of the fuel cells. Thus it is important to evaluate the behavior of the cracks in the solid oxide fuel cell for the performance and safety operation. From the results, we showed the stress distributions from the cathode to the anode and the effects of the edge crack in the electrolyte and the slant crack in the anode. Futhermore the crack propagation angle was expected according to the crack length and slant angle and the variation of the stress intensity factors for the each fracture mode was shown.

Electrochemical Effectiveness Factors for Butler-Volmer Reaction Kinetics in Active Electrode Layers of Solid Oxide Fuel Cells

  • Nam, Jin Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.344-355
    • /
    • 2017
  • In this study, a numerical approach is adopted to investigate the effectiveness factors for distributed electrochemical reactions in thin active reaction layers of solid oxide fuel cells (SOFCs), taking into account the Butler-Volmer reaction kinetics. The mathematical equations for the electrochemical reaction and charge conduction process were formulated by assuming that the active reaction layer has a small thickness, homogeneous microstructure, and high effective electronic conductivity. The effectiveness factor is defined as the ratio of the actual reaction rate (or equivalently, current generation rate) in the active reaction layer to the nominal reaction rate. From extensive numerical calculations, the effectiveness factors were obtained for various charge transfer coefficients of 0.3-0.8. These effectiveness data were then fitted to simple correlation equations, and the resulting correlation coefficients are presented along with estimated magnitude of error.

Electrochemical model for the simulation of solid oxide fuel cells (고체산화물연료전지의 시뮬레이션을 위한 전기화학모델)

  • Park, Joon-Guen;Lee, Shin-Ku;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.63-66
    • /
    • 2008
  • This study presents 0-dimensional model for solid oxide fuel cells(SOFCs). The physics of the cell and the simplifying assumptions are presented, and only hydrogen participates in the electrochemical reaction. The electrical potential is predicted using this model. The Butler-Volmer equation is used to describe the activation polarization and the exchange current density is changed according to the partial pressure of reactants and the temperature. The electrical conductivities of electrodes and an electrolyte are calculated for the ohmic polarization. Material characteristics and temperature affect those factors. Analysis of concentration polarization based on transport of gaseous species through porous electrodes is incorporated in this model. Both binary diffusion and Knudsen diffusion are considered as the diffusion mechanism. For validation, simulation results at this work are compared with our experimental results and numerical results by other researchers.

  • PDF

Enhanced Electrochemical Reactivity at Electrolyte/electrode Interfaces of Solid Oxide Fuel Cells with Ag Grids

  • Choi, Mingi;Hwang, Sangyeon;Byun, Doyoung;Lee, Wonyoung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.356-360
    • /
    • 2015
  • The specific role of current collectors was investigated at the electrolyte/electrode interface of solid oxide fuel cells (SOFCs). Ag grids were fabricated as current collectors using electrohydrodynamic (EHD) jet printing for precise control of the grid geometry. The Ag grids reduced both the ohmic and polarization resistances as the pitch of the Ag grids decreased from $400{\mu}m$ to $100{\mu}m$. The effective electron distribution along the Ag grids improved the charge transport and transfer at the interface, extending the active reaction sites. Our results demonstrate the applicability of EHD jet printing to the fabrication of efficient current collectors for performance enhancement of SOFCs.

Fabrication and Performance Test in Stacks of Planar Solid Oxide Fuel Cell under 1kW (1kW 이하의 평판형 SOFC 스택제작 및 성능평가)

  • Cho, Nam-Ung;Hwang, Soon-Cheol;Han, Sang-Moo;Kim, Yeoung-Woo;Kim, Seng-Goo;Jun, Jae-Ho;Kim, Do-Hyeong;Jun, Joong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.121-124
    • /
    • 2007
  • Stacks of solid oxide fuel cell under 1kW max power were designed on planar type employing anode supported cell and metallic interconnects. The stacks composed of 3-cells, 8-cells, and 16-cells were fabricated by using single cell purchased from Indec, sealant and interconnect prepared at RIST. In performance test of the final 16-cells stacks, OCV was recorded to be 16.7 V. Peak power and power density were 1 kW, 0.77 $W/cm^{2}$ at $820^{\circ}C$, respectively. In addition, the long term degradation rate of the power exhibited 2.25 % in 500 h at $750^{\circ}C$.

  • PDF

Microstructural Characterization of Composite Electrode Materials in Solid Oxide Fuel Cells via Image Processing Analysis

  • Bae, Seung-Muk;Jung, Hwa-Young;Lee, Jong-Ho;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.86-91
    • /
    • 2010
  • Among various fuel cells, solid oxide fuel cells (SOFCs) offer the highest energy efficiency, when taking into account the thermal recycling of waste heat at high temperature. However, the highest efficiency and lowest pollution for a SOFC can be achieved through the sophisticated control of its constituent components such as electrodes, electrolytes, interconnects and sealing materials. The electrochemical conversion efficiency of a SOFC is particularly dependent upon the performance of its electrode materials. The electrode materials should meet highly stringent requirements to optimize cell performance. In particular, both mass and charge transport should easily occur simultaneously through the electrode structure. Matter transport or charge transport is critically related to the configuration and spatial disposition of the three constituent phases of a composite electrode, which are the ionic conducting phase, electronic conducting phase, and the pores. The current work places special emphasis on the quantification of this complex microstructure of composite electrodes. Digitized images are exploited in order to obtain the quantitative microstructural information, i.e., the size distributions and interconnectivities of each constituent component. This work reports regarding zirconia-based composite electrodes.

Performance of Solid Oxide Fuel Cells with Direct Internal Reforming of Methane

  • Kim, Young Jin;Lim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.325-330
    • /
    • 2015
  • Performance of solid oxide fuel cells (SOFCs), in comparison with that under hydrogen fuel, were investigated under direct internal reforming conditions. Anode supported cells were fabricated with an Ni+YSZ anode, YSZ electrolyte, and LSM+YSZ cathode for the present work. Measurements of I-V curves and impedance were conducted with S/C (steam to carbon) ratio of ~ 2 at $800^{\circ}C$. The outlet gas was analyzed using gas chromatography under open circuit condition; the methane conversion rate was calculated and found to be ~ 90% in the case of low flow rate of methane and steam. Power density values were comparable for both cases (hydrogen fuel and internal steam reforming of methane), and in the latter case the cell performance was improved, with a decrease in the flow rate of methane with steam, because of the higher conversion rate. The present work indicates that the short-term performance of SOFCs with conventional Ni+YSZ anodes, in comparison with that under hydrogen fuel, is acceptable under internal reforming condition with the optimized fuel flow rate and S/C ratio.