• Title/Summary/Keyword: Solid model

Search Result 2,132, Processing Time 0.031 seconds

Transport Phenomena in Solid State Fermentation: Oxygen Transport in Static Tray Fermentors

  • Muniswaran, P.K.A.;Moorthy, S.Sundara;Charyulu, N.C.L.N.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.362-366
    • /
    • 2002
  • A mathematical model has been developed for describing the oxygen concentration during the exponential growth of microorganisms, in a static solid substrate bed supported on a tray fermentor. The model equations comprise of one partial differential equation for mass transfer and an ordinary differential equation of growth. After nondimensionlisation, analytical solution tn the model has been obtained by the method of Laplace transforms. An expression for critical thickness of bed is deduced from the model equation. The significance of the model in the design of tray fermentors is discussed. The validity of the discussion is verified by taking an illustration from the literature.

CFD Validation of Solid-Liquid Two-Phase flow for Analysis of Drilling Fluid Flow Characteristics (이수의 유동 특성 분석을 위한 고체-액체 2상 유동의 전산유체역학적 유효성 검토)

  • Choi, Yong-Seok;Park, Jae-Hyoun;Bae, Jae-Hwan;Lee, Bong-Hee;Kim, Jeong-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.611-618
    • /
    • 2018
  • In this study, numerical analysis of solid-liquid two-phase flow was conducted as a preliminary step to analyze the flow characteristics of drilling fluid using the commercial CFD code, ANSYS CFX 14.5. The homogeneous model and separated flow model were used to simulate solid-liquid two-phase flow phenomena. In the separated flow model, Gidaspow's drag force model was applied with the kinetic theory model was applied for solid particles. The validity of the numerical model used in this study was verified based on the published experimental results. Numerical analysis was carried out for volume fractions of 0.1 to 0.5 and velocities of 1 to 5 m/s in a horizontal tube with a diameter of 54.9 mm and a length of 3 m. The Pressure drop and volume fraction distribution of solid particles were confirmed. The pressure drop was predicted using the homogeneous model and separated flow model within the MAE of 17.04 % and 8.98 %, respectively. A high volume fraction was observed in the lower part of the tube, and the volume fraction decreased toward the upper part. As velocity increased, variations in volume fraction distribution at varying heights were decreased, and the numerical results predicted these flow characteristics well.

Comparison of Damping Capacities in Mg-Al and Mg-Zn Solid Solutions (Mg-Al 및 Mg-Zn 고용체의 진동감쇠능 비교)

  • Joong-Hwan Jun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.389-395
    • /
    • 2023
  • Damping capacities of Mg-2.5%Al and Mg-2.5%Zn (in atomic) solid solutions were comparatively investigated in order to clarify the influence of solutionized Al and Zn elements on the damping characteristics of Mg. In this study, solid solutions with similar grain size were obtained by solution treatment at 678 K for different times (24 h for Mg-2.5%Al and 36 h for Mg-2.5%Zn), followed by water quenching at RT. The Mg-2.5%Al and Mg-2.5%Zn solid solutions showed similar damping capacities in the strain-amplitude independent region of 1 × 10-6 ~ 1 × 10-5 and in the strain-amplitude dependent region below 6 × 10-4, over which the Mg-2.5%Zn solid solution possessed better damping capacity than the Mg-2.5%Al solid solution. The damping tendencies depending on strain-amplitude for the two solid solutions were analyzed and discussed in terms of similar length between weak pinning points (solutes) and different solute/dislocation interaction forces in Granato-Lücke model.

Finite element analysis of flow and heat transfer in solid particle moving beds of heat exchanger (고체입자를 이용한 열교환기에서의 유동 및 열전달의 유한요소해석)

  • Lee, Wan-Sul;Youn, sung-kie;Park, Sang-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.743-752
    • /
    • 1998
  • Numerical analysis for the flow and heat transfer in solid particle moving beds of heat exchangers is presented. The solid particle flow through the bundle of heat source tubes by the gravitational force. The heat energy is transferred through the direct contact of particles with the heat source tubes. The viscous-plastic fluid model and the convective heat transfer model are employed in the analysis. The flow field dominantly influences the total heat transfer in a heat exchanger. As the velocities of solid particles around the heat source tubes increase, the amount of heat transfer from the tubes increases. Some examples are presented to show the performance of the numerical model. The flow effect on the heat transfer is also studied through the examples.

A Superior Description of AC Behavior in Polycrystalline Solid Electrolytes with Current-Constriction Effects

  • Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.150-161
    • /
    • 2016
  • The conventional brick-layer model is not satisfactory either in theory or in practice for the description of dispersive responses of polycrystalline solid electrolytes with current-constriction effects at the grain boundaries. Parallel networks of complex dielectric functions have been shown to successfully describe the AC responses of polycrystalline sodium conductors over a wide temperature and frequency range using only around ten model parameters of well-defined physical significance. The approach can be generally applied to many solid electrolyte systems. The present work illustrates the approach by simulation. Problems of bricklayer model analysis are demonstrated by fitting analysis of the simulated data under experimental conditions.

Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory (퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템)

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong;Kim Nam-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.343-348
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

An Ultrasonic Measurement Model to Predict a Reflected Signal from Non-Linear Burning Surface of Solid Propellants

  • Song, Sung-Jin;Kim, Hak-Joon;Oh, Hyun-Taek;Lee, Sang-Won;Song, Seung-Hyun;Kim, In-Chul;Yoo, Ji-Chang;Jung, Jung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.531-540
    • /
    • 2007
  • While determination of the solid propellant burning rates by ultrasound, it has been reported that the frequent data scatters were caused by two major factors; 1) variation in the acoustical properties, and 2) non-linear burning of a solid propellant sample under investigation. This work is carried out for the purpose of investigating the effect of non-linear burning of solid propellant samples. Specifically, we propose an ultrasonic measurement model that can predict the reflections from solid propellant surfaces with non-linear burning by the combination of two ingredients; 1) a pulse-echo ultrasonic measurement model for a planar, circular reflector imbedded in the second medium in an immersion set-up, and 2) an efficient model of non-linear burning surfaces with a number of small, planar circles. Then, we demonstrate the capability of the proposed measurement model by simulation of the surface echo signals from four different burning surfaces that have been generated by the combination of two factors; the base shape (flat or paraboloidal) and the surface roughness (perfectly smooth or randomly rough). From the simulation presented here, we can confirm the fact that the non-linear burning of the propellant can cause the waveform change of the burning surface echo and the corresponding spectrum variation.

A Study on the Automatic Design Program for Assembly Model (조립모델 생성을 위한 자동설계 프로그램에 관한 연구)

  • 이승수;김민주;김태호;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.600-603
    • /
    • 2002
  • In this study, Automatic design program creates 3D solid models and constructs them. The method of making assembly model is two. One assembles the element made in automatic design program with hand, the other develops the automatic design program fur creating assembly model. Automatic design program improves the convenience of user. In creating gears, involute curve and Trochoidal fillet curve are made by mathematical development.

  • PDF

CAD Data Exchange among Different Commercial Packages (이 기종 시스템간의 CAD 데이터 교환)

  • Kim, Tae-Wook;Hwang, Byeong-eok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.377-382
    • /
    • 2004
  • This research was about implementing STEP for data exchange among different commercial package(CAD system). STEP was used to share CAD data as follows. ST-Developer implement Solid model was used with a physical file of STEP and represented in a CAD system. And then STEP conversion utility was used to make a neutrality format form in a component modeling. Analysis of Solid model was made possible for CAD system to read in and analyzed Solid model. This research are summarized as follows 1. A basis Model development used Visual C++ for a neutrality data of a programming interface general-use CAD system, and produced Box and Cylinder to a physical file, the result was implemented this in a programming interface to general-use CAD system, it is represented in CAD system as identical one modeling object. 2. STEP was used in different CAD system to utilize to its of each CAD system maximum, CATIA V5R9 user was able to analyze MDT 6 Modeling Arm. 3. STEP was used able to interpret and remodel the existing Solid model.

  • PDF

A PREDICTION OF BONY INTERFERENCE BETWEEN PROXIMAL & DISTAL SEGMENT OF THE MANDIBLE WITH INTEGRATED 3D SOLID MODEL AND DENTAL CAST IN ORTHOGNATHIC SURGERY (턱교정 수술에서 3차원 입체 모델과 치아 석고모형의 결합을 이용한 하악 근원심 골편간 간섭의 예측)

  • Kwon, Tae-Geon;Lee, Sang-Han;Kim, Jong-Bae;Nam, Ki-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.3
    • /
    • pp.163-168
    • /
    • 2003
  • Three-dimensional solid model has not been widely used in surgical prediction of orthognathic surgery because frequent artifacts from occlusal restorations or prosthesis limited the usefulness of simulated surgery involving occlusion. We prepared three-dimensional(3D) solid model from CT data and integrated the 3D solid model with dental cast using a face-bow transfer technique combined with skeletal reference measurement and confirmation with cephalometric radiographs. With this simple and easy method, it was possible to predict bony interference between the proximal and distal segment of the mandible so that we can prevent condylar displacement after sagittal split ramus osteotomy of the mandible with prominent asymmetry. The method error was within 2mm and it seemed to be useful in preoperative planning for maxillofacial surgery with maxillo-mandibular occlusal change.