Browse > Article
http://dx.doi.org/10.4191/kcers.2016.53.2.150

A Superior Description of AC Behavior in Polycrystalline Solid Electrolytes with Current-Constriction Effects  

Lee, Jong-Sook (School of Materials Science and Engineering, Chonnam National University)
Publication Information
Abstract
The conventional brick-layer model is not satisfactory either in theory or in practice for the description of dispersive responses of polycrystalline solid electrolytes with current-constriction effects at the grain boundaries. Parallel networks of complex dielectric functions have been shown to successfully describe the AC responses of polycrystalline sodium conductors over a wide temperature and frequency range using only around ten model parameters of well-defined physical significance. The approach can be generally applied to many solid electrolyte systems. The present work illustrates the approach by simulation. Problems of bricklayer model analysis are demonstrated by fitting analysis of the simulated data under experimental conditions.
Keywords
Solid electrolytes; Current-constriction; Dielectric spectroscopy; Simulation; Complex dielectric function;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. Cole and R. Cole, "Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics," J. Chem. Phys., 9 [4] 341-51 (1941).   DOI
2 E.-C. Shin, J. Ma, P.-A. Ahn, H.-H. Seo, D. T. Nguyen, and J. S. Lee, "Deconvolution of Four Transmission-Line-Model Impedances in Ni-YSZ/YSZ/LSM Solid Oxide Cells and Mechanistic Insights," Electrochim. Acta, 188 [10] 240-53 (2016).   DOI
3 J.-H. Kim, E.-C. Shin, D.-C. Cho, S. Kim, S. Lim, K. Yang, J. Beum, J. Kim, S. Yamaguchi, and J.-S. Lee, "Electrical Characterization of Polycrystalline Sodium ${\beta}{\prime}{\prime}$-alumina: Revisited and Resolved," Solid State Ionics, 264 22-35 (2014).   DOI
4 S.-H. Moon, D.-C. Cho, D. T. Nguyen, E.-C. Shin, and J.-S. Lee, "A Comprehensive Treatment of Universal Dispersive Frequency Responses in Solid Electrolytes by Immittance Spectroscopy: Low Temperature AgI Case," J. Solid State Electrochem., 19 [8] 2457-64 (2015).   DOI
5 S.-H. Moon, Y.-H. Kim, D.-C. Cho, E.-C. Shin, D. Lee, W. B. Im, and J.-S. Lee, "Sodium Ion Transport in Polymorphic Scandium NASICON Analog $Na_3Sc_2(PO_4)_3$ with New Dielectric Spectroscopy Approach for Current-Constriction Effects," Solid State Ionics, 289 55-71 (2016).   DOI
6 J. Fleig and J. Maier, "The Impedance of Ceramics with Highly Resistive Grain Boundaries: Validity and Limits of the Brick Layer Model," J. Eur. Ceram. Soc., 19 [6] 693-96 (1999).   DOI
7 J. Fleig and J. Maier, "Finite-Element Calculations on the Impedance of Electroceramics with Highly Resistive Grain Boundaries: I, Laterally Inhomogeneous Grain Boundaries," J. Am. Ceram. Soc., 82 [12] 3485-93 (1999).   DOI
8 B. A. Boukamp, "Practical Application of the Kramers-Kronig Transformation on Impedance Measurements in Solid State Electrochemistry," Solid State Ionics, 62 131-41 (1993).   DOI
9 B. Boukamp,"A Linear Kronig-Kramers Transform Test for Immittance Data Validation," J. Electrochem. Soc., 142 [6] 1885-94 (1995).   DOI
10 D. Davidson and R. Cole, "Dielectric Relaxation in Glycerol, Propylene Glycol, and n-Propanol," J. Chem. Phys., 19 [12] 1484-90 (1951).   DOI
11 S. Havriliak and S. Negami, "A Complex Plane Analysis of ${\alpha}$-dispersions in Some Polymer Systems," J. Polym. Sci., Part C: Polym. Symp., 14 [1] 99-117 (1966).   DOI
12 A. Boersma, J. Van Turnhout, and M. Wubbenhorst, "Dielectric Characterization of a Thermotropic Liquid Crystalline Copolyesteramide: 1. Relaxation Peak Assignment," Macromolecules, 31 [21] 7453-60 (1998).   DOI
13 R. Diaz-Calleja, "Comment on the Maximum in the Loss Permittivity for the Havriliak-Negami Equation," Macromolecules, 33 [24] 8924-24 (2000).   DOI
14 S. Havriliak and S. Havriliak, "Results from an Unbiased Analysis of Nearly 1000 Sets of Relaxation Data," J. Non-Cryst. Solids, 172 297-310 (1994).
15 J. R. Macdonald, "New Model for Nearly Constant Dielectric Loss in Conductive Systems: Temperature and Concentration Dependencies," J. Chem. Phys., 116 [8] 3401-9 (2002).   DOI
16 J. R. Macdonald, "Universality, the Barton-Nakajima-Namikawa Relation, and Scaling for Dispersive Ionic Materials," Phys. Rev. B, 71 [18] 184307 (2005).   DOI
17 E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Application; Wiley Inter-Science, Hoboken, New Jersey, 2005.
18 J. R. Macdonald, "Impedance Spectroscopy: Models, Data Fitting, and Analysis," Solid State Ionics, 176 [25] 1961-69 Hokken, New Jerser (2005).   DOI
19 J. R. Macdonald, Impedance spectroscopy: Theory, Experiment, and Applications; Chapter 4, pp. 264-82, Wiley Inter-Science, Hoboken, New Jersey, 2005.
20 J. R. Macdonald, "Surprising Conductive-and Dielectric-System Dispersion Differences and Similarities for Two Kohlrausch-related Relaxation-Time Distributions," J. Phys.: Condens. Matter, 18 [2] 629-44 (2006).   DOI
21 J. R. Macdonald, CNLS Immittance, Inversion, and Simulation Fitting Program LEVM/LEVNW Manual; 8.13 edition, 2015.
22 A. K. Jonscher, "The Universal Dielectric Response," Nature, 267 673-79 (1977).   DOI
23 K. Funke, "Jump Relaxation in Solid Electrolytes," Prog. Solid State Chem., 22 [2] 111 (1993).   DOI
24 A. K. Jonscher, "Dielectric Relaxation in Solids," J. Phys. Appl. Phys., 32 [14] R57 (1999).   DOI
25 D. Almond, A. West, and R. Grant, "Temperature Dependence of the Ac Conductivity of Na ${\beta}$ Aumina," Solid State Comm., 44 [8] 1277-80 (1982).   DOI
26 D. Sidebottom, P. Green, and R. Brow, "Comparison of KWW and Power Law Analyses of an Ion-Conducting Glass," J. Non-Cryst. Solids, 183 [1] 151-60 (1995).   DOI
27 A. Nowick, A. Vaysleyb, and I. Kuskovsky, "Universal Dielectric Response of Variously Doped $CeO_2$ Ionically Conducting Ceramics," Phys. Rev. B, 58 [13] 8398 (1998).   DOI
28 D. L. Sidebottom, "Universal Approach for Scaling the Ac Conductivity in Ionic Glasses," Phys. Rev. Lett., 82 [18] 3653 (1999).   DOI
29 K. L. Ngai, "Properties of the Constant Loss in Ionically Conducting Glasses, Melts, and Crystals," J. Chem. Phys., 110 [21] 10576-84 (1999).   DOI
30 K. L. Ngai and C. Leon, "Cage Decay, Near Constant Loss, and Crossover to Cooperative Ion Motion in Ionic Conductors: Insight from Experimental Data," Phys. Rev. B, 66 [6] 064308 (2002).   DOI
31 J. R. Macdonald, "Discrimination between Series and Parallel Fitting Models for Nearly Constant Loss Effects in Dispersive Ionic Conductors," J. Non-Cryst. Solids, 307 913-20 (2002).
32 B. Roling, C. Martiny, and S. Murugavel, "Ionic Conduction in Glass: New Information on the Interrelation between the 'Jonscher Behavior' and the 'Nearly Constant-Loss Behavior' from Broadband Conductivity Spectra," Phys. Rev. Lett., 87 [8] 085901 (2001).   DOI
33 K. Funke, R. Banhatti, and C. Cramer, "Correlated Ionic Hopping Processes in Crystalline and Glassy Electrolytes Resulting in MIGRATION-type and Nearly-Constant-Loss-Type Conductivities," Phys. Chem. Chem. Phys., 7 [1] 157-65 (2005).   DOI
34 J. R. Macdonald, "Nearly Constant Loss or Constant Loss in Ionically Conducting Glasses: A Physically Realizable Approach," J. Chem. Phys., 115 [13] 6192-99 (2001).   DOI
35 R. Banhatti, D. Laughman, L. Badr, and K. Funke, "Nearly Constant Loss Effect in Sodium Borate and Silver Meta- Phosphate Glasses: New Insights," Solid State Ionics, 192 [1] 70-5 (2011).   DOI
36 P. Lunkenheimer and A. Loidl, "Response of Disordered Matter to Electromagnetic Fields," Phys. Rev. Lett., 91 [20] 207601 (2003).   DOI
37 J.-S. Lee, J. Jamnik, and J. Maier, "Generalized Equivalent Circuits for Mixed Conductors: Silver Sulfide as a Model System," Monatash. Chem. Chem. Mon., 140 [9] 1113-19 (2009).   DOI
38 E.-C. Shin, P.-A. Ahn, H.-H. Seo, J.-M. Jo, S.-D. Kim, S.-K. Woo, J. H. Yu, J. Mizusaki, and J.-S. Lee, "Polarization Mechanism of High Temperature Electrolysis in a Ni-YSZ/ YSZ/LSM Solid Oxide Cell by Parametric Impedance Analysis," Solid State Ionics, 232 80-96 (2013).   DOI
39 S. Kim, J. Fleig, and J. Maier, "Space Charge Conduction: Simple Analytical Solutions for Ionic and Mixed Conductors and Application to Nanocrystalline Ceria," Phys. Chem. Chem. Phys., 5 [11] 2268-73 (2003).   DOI
40 E.-C. Shin, Y.-H. Kim, S.-J. Kim, C.-N. Park, J. Kim, and J.-S. Lee, "Pneumatochemical Immittance Spectroscopy for Hydrogen Storage Kinetics," J. Phys. Chem. C, 117 [39] 19786-808 (2013).   DOI
41 J.-S. Lee, S. Adams, and J. Maier, "Defect Chemistry and Transport Characteristics in ${\beta}$ -AgI," J. Phys. Chem. Solids, 61 1607-22 (2000).   DOI
42 X. Guo and R. Waser, "Electrical Properties of the Grain Boundaries of Oxygen Ion Conductors: Acceptor-Doped Zirconia and Ceria," Prog. Mater. Sci., 51 [2] 151-210 (2006).   DOI
43 C. Kjolseth, H. Fjeld, O. Prytz, P. Dahl, C. Estournes, R. Haugsrud, and T. Norby, "Space-Charge Theory Applied to the Grain Boundary Impedance of Proton Conducting $BaZr_{0.9}Y_{0.1}O_{3-{\delta}}$," Solid State Ionics, 181 [5-7] 268-75 (2010).   DOI
44 C.-T. Chen, C. E. Danel, and S. Kim, "On the Origin of the Blocking Effect of Grain-Boundaries on Proton Transport in Yttrium-doped Barium Zirconates," J. Mater. Chem., 21 [14] 5435-42 (2011).   DOI
45 M. Shirpour, R. Merkle, C. Lin, and J. Maier, "Nonlinear Electrical Grain Boundary Properties in Proton Conducting Y-$BaZrO_3$ Supporting the Space Charge Depletion Model," Phys. Chem. Chem. Phys., 14 [2] 730-40 (2012).   DOI
46 C. R. Mariappan, M. Gellert, C. Yada, F. Rosciano, and B. Roling, "Grain Boundary Resistance of Fast Lithium Ion Conductors: Comparison between a Lithium-Ion Conductive Li-Al-Ti-P-O-type Glass Ceramic and a $Li_{1.5}Al_{0.5}Ge_{1.5}P_3O_{12}$ Ceramic," Electrochem. Comm., 14 [1] 25-8 (2012).   DOI
47 H.-I. Yoo, T.-S. Oh, H.-S. Kwon, D.-K. Shin, and J.-S. Lee, "Electrical Conductivity-Defect Structure Correlation of Variable-Valence and Fixed-Valence Acceptor-Doped $BaTiO_3$ in Quenched State," Phys. Chem. Chem. Phys., 11 [17] 3115-26 (2009).   DOI
48 I. Raistrick, C. Ho, and R. A. Huggins, "Ionic Conductivity of Some Lithium Silicates and Aluminosilicates," J. Electrochem. Soc., 123 [10] 1469-76 (1976).   DOI
49 P. G. Bruce and A. R. West, "The A-C Conductivity of Polycrystalline LISICON, $Li_{2+2x}Zn_{1-x}GeO_4$, and a Model for Intergranular Constriction Resistances," J. Electrochem. Soc., 130 [3] 662-69 (1983).   DOI
50 J.-S. Lee, E.-C. Shin, D.-K. Shin, Y. Kim, P.-A. Ahn, H.-H. Seo, J.-M. Jo, J.-H. Kim, G.-R. Kim, Y.-H. Kim, J.-Y. Park, C.-H. Kim, J.-O. Hong, and K.-H. Hur, "Impedance Spectroscopy Models for X5R Multilayer Ceramic Capacitors," J. Korean Ceram. Soc., 49 [5] 475-83 (2012).   DOI
51 J. R. Macdonald, "Comparison of the Universal Dynamic Response Power-Law Fitting Model for Conducting Systems with Superior Alternative Models," Solid State Ionics, 133 [1] 79-97 (2000).   DOI